编一个 stm32 小车避障小车程序

时间: 2023-08-10 07:05:22 浏览: 123
好的,下面是一个简单的 stm32 小车避障小车程序: ```c #include "main.h" #include "ultrasonic.h" #include "motor.h" int main(void) { HAL_Init(); MX_GPIO_Init(); MX_USART1_UART_Init(); MX_TIM2_Init(); MX_TIM3_Init(); ultrasonic_init(); motor_init(); while (1) { uint32_t distance = ultrasonic_measure(); if (distance < 20) // 如果遇到障碍物 { motor_stop(); // 停止小车 HAL_Delay(1000); // 等待一段时间 motor_turn_left(); // 左转 HAL_Delay(500); // 等待一段时间 } else { motor_forward(); // 前进 } } } ``` 这个程序使用了两个自定义的库:`ultrasonic.h` 和 `motor.h`。其中,`ultrasonic.h` 封装了超声波模块的操作,`motor.h` 封装了电机的操作。你可以根据自己的硬件情况来编写这两个库。
相关问题

写一段stm32小车避障程序

好的,以下是一个简单的基于STM32的循迹避障小车程序,供您参考: ```c #include "stm32f10x.h" #define LEFT_SENSOR GPIO_Pin_0 #define RIGHT_SENSOR GPIO_Pin_1 #define LEFT_MOTOR_1 GPIO_Pin_2 #define LEFT_MOTOR_2 GPIO_Pin_3 #define RIGHT_MOTOR_1 GPIO_Pin_4 #define RIGHT_MOTOR_2 GPIO_Pin_5 void GPIO_Configuration(void); void Delay(uint32_t nCount); int main(void) { GPIO_Configuration(); while (1) { if (GPIO_ReadInputDataBit(GPIOA, LEFT_SENSOR) == 1 && GPIO_ReadInputDataBit(GPIOA, RIGHT_SENSOR) == 1) { GPIO_SetBits(GPIOA, LEFT_MOTOR_1); GPIO_ResetBits(GPIOA, LEFT_MOTOR_2); GPIO_SetBits(GPIOA, RIGHT_MOTOR_1); GPIO_ResetBits(GPIOA, RIGHT_MOTOR_2); } else if (GPIO_ReadInputDataBit(GPIOA, LEFT_SENSOR) == 1 && GPIO_ReadInputDataBit(GPIOA, RIGHT_SENSOR) == 0) { GPIO_SetBits(GPIOA, LEFT_MOTOR_1); GPIO_ResetBits(GPIOA, LEFT_MOTOR_2); GPIO_ResetBits(GPIOA, RIGHT_MOTOR_1); GPIO_ResetBits(GPIOA, RIGHT_MOTOR_2); } else if (GPIO_ReadInputDataBit(GPIOA, LEFT_SENSOR) == 0 && GPIO_ReadInputDataBit(GPIOA, RIGHT_SENSOR) == 1) { GPIO_ResetBits(GPIOA, LEFT_MOTOR_1); GPIO_ResetBits(GPIOA, LEFT_MOTOR_2); GPIO_SetBits(GPIOA, RIGHT_MOTOR_1); GPIO_ResetBits(GPIOA, RIGHT_MOTOR_2); } else { GPIO_ResetBits(GPIOA, LEFT_MOTOR_1); GPIO_SetBits(GPIOA, LEFT_MOTOR_2); GPIO_ResetBits(GPIOA, RIGHT_MOTOR_1); GPIO_SetBits(GPIOA, RIGHT_MOTOR_2); } } } void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); GPIO_InitStructure.GPIO_Pin = LEFT_SENSOR | RIGHT_SENSOR; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = LEFT_MOTOR_1 | LEFT_MOTOR_2 | RIGHT_MOTOR_1 | RIGHT_MOTOR_2; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); } void Delay(uint32_t nCount) { for(; nCount != 0; nCount--); } ``` 这是一个基本的循迹避障小车程序,其中使用了两个红外线传感器来感知车辆前方的障碍物。如果两个传感器都检测到障碍物,则向前移动,否则根据传感器检测结果调整车辆方向。如果左传感器检测到障碍物,则左转,如果右传感器检测到障碍物,则右转,否则后退。 需要注意的是,此程序仅供参考,具体实现可能因车辆硬件配置、传感器精度等因素而有所不同。

stm32小车避障keil5代码

以下是基于STM32的小车避障代码,使用Keil5编写: ``` #include "stm32f10x.h" #include "delay.h" #include "usart.h" #include "ultrasonic.h" #include "motor.h" #define MAX_DISTANCE 400 int main(void) { int distance; SystemInit(); delay_init(); USART_InitConfig(); Ultrasonic_InitConfig(); Motor_InitConfig(); while(1) { distance = Ultrasonic_GetDistance(); if(distance > MAX_DISTANCE) // 超声波测距离大于最大距离,向前行驶 { Motor_SetSpeed(800, 800); USART_SendString("Forward\n"); } else // 超声波测距离小于最大距离,后退并转向 { Motor_SetSpeed(-800, -800); delay_ms(500); Motor_SetSpeed(800, -800); delay_ms(1000); USART_SendString("Backward and Turn\n"); } delay_ms(100); } } ``` 该代码使用了超声波模块进行距离测量,当距离小于最大距离时,小车会后退并转向,否则小车会向前行驶。其中,Motor_SetSpeed函数用于控制小车电机的速度和方向,USART_SendString函数用于通过串口发送调试信息。需要注意的是,该代码中各部分的初始化函数需要根据具体硬件电路进行修改。
阅读全文

相关推荐

最新推荐

recommend-type

基于STM32的智能小车寻迹避障系统硬件设计.pdf

复位电路通过一个按键开关K1和100KΩ电阻R1实现手动复位,晶振电路则由18pF电容C3、C4和6MHz晶振Y1组成,为STM32提供稳定的时钟信号。 6. **控制流程**:小车根据CCD传感器识别的轨迹行驶,遇到E18-B03N1光电开关...
recommend-type

基于STM32的循迹往返小车设计

STM32F103芯片为核心的智能循迹小车设计是一种常见的电子竞赛项目,它集成了微控制器技术、传感器技术、电机控制以及显示技术等多种领域知识。STM32系列是意法半导体(STMicroelectronics)推出的基于ARM Cortex-M...
recommend-type

STM32实现智能小车电磁循迹

【STM32实现智能小车电磁循迹】项目旨在利用STM32单片机和电磁感应原理,构建一个能够沿着预设线路自主行驶的智能小车。该项目涉及到多个技术环节,包括赛道检测原理、电感线圈设计、信号处理电路、传感模块功能实现...
recommend-type

【单片机项目】制作一辆基于STM32的智能小车——概述

智能小车项目则是一个进阶的挑战,旨在集成多种功能,包括驱动电机、循迹避障、OLED显示、电压检测和蓝牙控制。这些功能的实现涉及多个知识点: 1. **驱动电机**:需要通过电机驱动模块(如A4950)控制电机的正反转...
recommend-type

毕业设计&课设_百脑汇商城管理系统:Java 毕设项目.zip

该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过严格测试运行成功才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。