基于Transformer 的图像融合方法
时间: 2023-12-13 18:32:18 浏览: 130
基于CNN与视觉Transformer融合的图像分类模型
基于Transformer的图像融合方法是一种新兴的图像融合方法,它使用Transformer网络来学习源图像之间的关系,并将它们融合成一个高质量的图像。该方法的主要思想是将源图像分别编码为一组特征向量,然后使用Transformer网络来学习这些特征向量之间的关系。最后,将学习到的关系应用于源图像的解码器中,以生成融合图像。
以下是基于Transformer的图像融合方法的步骤:
1. 将源图像分别输入编码器中,生成一组特征向量。
2. 使用Transformer网络学习这些特征向量之间的关系。
3. 将学习到的关系应用于源图像的解码器中,以生成融合图像。
以下是一个基于Transformer的图像融合方法的Python代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class TransformerEncoder(nn.Module):
def __init__(self, input_dim, hidden_dim, num_layers, num_heads, dropout):
super(TransformerEncoder, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.num_heads = num_heads
self.dropout = dropout
self.pos_encoder = PositionalEncoding(input_dim, dropout)
self.transformer_encoder = nn.TransformerEncoder(nn.TransformerEncoderLayer(input_dim, num_heads, hidden_dim, dropout), num_layers)
def forward(self, src):
src = self.pos_encoder(src)
output = self.transformer_encoder(src)
return output
class TransformerDecoder(nn.Module):
def __init__(self, input_dim, hidden_dim, num_layers, num_heads, dropout):
super(TransformerDecoder, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.num_heads = num_heads
self.dropout = dropout
self.pos_encoder = PositionalEncoding(input_dim, dropout)
self.transformer_decoder = nn.TransformerDecoder(nn.TransformerDecoderLayer(input_dim, num_heads, hidden_dim, dropout), num_layers)
def forward(self, tgt, memory):
tgt = self.pos_encoder(tgt)
output = self.transformer_decoder(tgt, memory)
return output
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
class ImageFusionTransformer(nn.Module):
def __init__(self, input_dim, hidden_dim, num_layers, num_heads, dropout):
super(ImageFusionTransformer, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.num_heads = num_heads
self.dropout = dropout
self.encoder = TransformerEncoder(input_dim, hidden_dim, num_layers, num_heads, dropout)
self.decoder = TransformerDecoder(input_dim, hidden_dim, num_layers, num_heads, dropout)
self.fc = nn.Linear(input_dim, 3)
def forward(self, src, tgt):
memory = self.encoder(src)
output = self.decoder(tgt, memory)
output = self.fc(output)
return output
```
阅读全文