基于Transformer图像融合
时间: 2023-11-14 15:29:01 浏览: 144
图像融合的
3星 · 编辑精心推荐
基于Transformer的图像融合方法是CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition,这种方法结合了CNN和Transformer。它将特征解耦的思想引入了图像融合,将跨模态信息分解为共有信息和特有信息,并采用两阶段训练法。在第一阶段,采用自监督方式进行训练,输入和输出都是源图像;在第二阶段,输入是分解后的特征,输出是融合后的图像。融合层使用了LT和INN块来实现base/detail特征的融合。解码器首先将分解的特征在通道维度拼接作为输入,在训练阶段I将源图像作为输出,在训练阶段II将融合图像作为输出。这种方法通过实验证明了其在高级视觉任务上的融合效果。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
阅读全文