FR算法matlab代码
时间: 2023-11-30 13:04:09 浏览: 90
根据提供的引用内容,我们可以了解到FR算法是一种无约束最优化方法,可以用于求解无约束最优化问题。下面是FR算法的Matlab代码实现:
```matlab
function [x, fval, exitflag, output] = FR(fun, x0, options)
% FR - Fletcher-Reeves conjugate gradient method
% [x, fval, exitflag, output] = FR(fun, x0) starts at x0 and attempts to
% find a local minimum of the function fun. fun is a function handle. x0
% is a column vector. The function fun(x) should return a scalar value.
%
% [x, fval, exitflag, output] = FR(fun, x0, options) minimizes with the
% default optimization parameters replaced by values in the structure
% options, created with the OPTIMOPTIONS function.
%
% The FR function can be called with a function handle and an initial
% guess as follows:
% x = FR(@fun, x0);
%
% The function returns the minimum value of the function and the
% corresponding values of the variables.
%
% The function can also be called with additional options as follows:
% options = optimoptions('FR', 'TolFun', 1e-6, 'MaxIter', 1000);
% x = FR(@fun, x0, options);
%
% The available options are:
% TolFun - Termination tolerance on the function value (default: 1e-6)
% MaxIter - Maximum number of iterations allowed (default: 1000)
%
% The function returns the following:
% x - Minimum value of the function
% fval - Value of the function at the minimum
% exitflag - Reason for stopping
% 1 - Function value below TolFun
% 2 - Maximum number of iterations reached
% output - Structure containing output information
iterations - Number of iterations performed
% message - Termination message
%
% Example:
% fun = @(x) x(1)^2 + x(2)^2;
% x0 = [3; 4];
% x = FR(fun, x0);
%
% Reference:
% Nocedal, J., & Wright, S. J. (2006). Numerical optimization
% (2nd ed.). Springer.
%
% See also OPTIMOPTIONS.
% Set default options
defaultOptions.TolFun = 1e-6;
defaultOptions.MaxIter = 1000;
% Check for user-defined options
if nargin < 3
options = [];
end
% Merge user-defined options with default options
options = mergeOptions(defaultOptions, options);
% Initialize variables
x = x0;
fval = fun(x);
g = grad(fun, x);
d = -g;
k = 0;
% Main loop
while norm(g) > options.TolFun && k < options.MaxIter
% Compute step size
alpha = linesearch(fun, x, d);
% Update variables
x = x + alpha*d;
fval_old = fval;
fval = fun(x);
g_old = g;
g = grad(fun, x);
% Compute beta
beta = (g'*g)/(g_old'*g_old);
% Update direction
d = -g + beta*d;
% Update iteration count
k = k + 1;
end
% Set exit flag and output message
if norm(g) <= options.TolFun
exitflag = 1;
message = 'Function value below TolFun';
else
exitflag = 2;
message = 'Maximum number of iterations reached';
end
% Set output structure
output.iterations = k;
output.message = message;
end
function g = grad(fun, x)
% Compute gradient of function at point x
h = 1e-6;
n = length(x);
g = zeros(n, 1);
for i = 1:n
e = zeros(n, 1);
e(i) = 1;
g(i) = (fun(x+h*e) - fun(x-h*e))/(2*h);
end
end
function alpha = linesearch(fun, x, d)
% Compute step size using backtracking line search
alpha = 1;
rho = 0.5;
c = 1e-4;
fval = fun(x);
g = grad(fun, x);
while fun(x+alpha*d) > fval + c*alpha*(g'*d)
alpha = rho*alpha;
end
end
function options = mergeOptions(defaultOptions, options)
% Merge user-defined options with default options
if isempty(options)
options = defaultOptions;
else
fields = fieldnames(defaultOptions);
for i = 1:length(fields)
if ~isfield(options, fields{i})
options.(fields{i}) = defaultOptions.(fields{i});
end
end
end
end
```
阅读全文