简述非平衡二叉排序树转换成平衡二叉排序树过程

时间: 2024-04-28 14:16:24 浏览: 109
非平衡二叉排序树转换成平衡二叉排序树的过程通常称为平衡化操作,其中最常用的方法是通过旋转操作来实现。下面是一个简要的描述: 1. 首先,我们需要确定当前二叉排序树的不平衡节点。常见的不平衡情况有左左、左右、右右和右左四种情况。 2. 对于左左和右右的情况,可以通过单旋转来进行平衡化。对于左左情况,我们需要进行右旋转;对于右右情况,我们需要进行左旋转。 3. 对于左右和右左的情况,需要进行双旋转来进行平衡化。对于左右情况,我们需要先对不平衡节点的左子树进行左旋转,然后再对整个二叉排序树进行右旋转;对于右左情况,我们需要先对不平衡节点的右子树进行右旋转,然后再对整个二叉排序树进行左旋转。 4. 在进行旋转操作后,需要更新相关节点的高度信息,以保证整个二叉排序树的平衡性。 需要注意的是,以上只是一种常见的平衡化操作方法,实际上还有其他方法可以实现非平衡二叉排序树到平衡二叉排序树的转换。
阅读全文

相关推荐

application/x-rar
1本程序在vc++6.0编译通过并能正常运行。 2主界面 程序已经尽量做到操作简便了,用户只需要根据提示一步步进行操作就行了。 六思考和总结: 这个课程设计的各个基本操作大部分都在我的综合性实验中实现了,所以做这个主要攻克插入和删除这两个算法!其中插入在书本上已经有了,其中的右平衡算法虽然没有给出,但通过给出的左平衡算法很容易就可以写出右平衡算法。所以最终的点就在于删除算法的实现!做的过程中对插入算法进行了非常非常多次的尝试!花了非常多的时间,这其中很多时候是在对程序进行单步调试,运用了VC6。0的众多良好工具,也学到了很多它的许多好的调试手段。 其中删除算法中最难想到的一点是:在用叶子结点代替要删除的非叶子结点后,应该递归的运用删除算法去删除叶子结点!这就是整个算法的核心,其中很强烈得体会到的递归的强大,递归的最高境界(我暂时能看到的境界)! 其它的都没什么了。选做的那两个算法很容易实现的: 1合并两棵平衡二叉排序树:只需遍历其中的一棵,将它的每一个元素插入到另一棵即可。 2拆分两棵平衡二叉排序树:只需以根结点为中心,左子树独立为一棵,右子树独立为一棵,最后将根插入到左子树或右子树即可。 BSTreeEmpty(BSTree T) 初始条件:平衡二叉排序树存在。 操作结果:若T为空平衡二叉排序树,则返回TRUE,否则FALSE. BSTreeDepth(BSTree T) 初始条件:平衡二叉排序树存在。 操作结果:返回T的深度。 LeafNum(BSTree T) 求叶子结点数,非递归中序遍历 NodeNum(BSTree T) 求结点数,非递归中序遍历 DestoryBSTree(BSTree *T) 后序遍历销毁平衡二叉排序树T R_Rotate(BSTree *p) 对以*p为根的平衡二叉排序树作右旋处理,处理之后p指向新的树根结点 即旋转处理之前的左子树的根结点 L_Rotate(BSTree *p) 对以*p为根的平衡二叉排序树作左旋处理,处理之后p指向新的树根结点, 即旋转处理之前的右子树的根结点 LeftBalance(BSTree *T) 对以指针T所指结点为根的平衡二叉排序树作左平衡旋转处理, 本算法结束时,指针T指向新的根结点 RightBalance(BSTree *T) 对以指针T所指结点为根的平衡二叉排序树作右平衡旋转处理, 本算法结束时,指针T指向新的根结点 Insert_AVL(BSTree *T, TElemType e, int *taller) 若在平衡的二叉排序树T中不存在和e有相同的关键字的结点, 则插入一个数据元素为e的新结点,并返回OK,否则返回ERROR. 若因插入而使二叉排序树失去平衡,则作平衡旋转处理 布尔变量taller反映T长高与否 InOrderTraverse(BSTree T) 递归中序遍历输出平衡二叉排序树 SearchBST(BSTree T, TElemType e, BSTree *f, BSTree *p) 在根指针T所指的平衡二叉排序树中递归的查找其元素值等于e的数据元素, 若查找成功,则指针p指向该数据元素结点,并返回TRUE,否则指针p 指向查找路径上访问的最后一个结点并返回FALSE,指针f指向T的双亲, 其初始调用值为NULL Delete_AVL(BSTree *T, TElemType e, int *shorter) 在平衡二叉排序树中删除元素值为e的结点,成功返回OK,失败返回ERROR PrintBSTree_GList(BSTree T) 以广义表形式打印出来 PrintBSTree_AoList(BSTree T, int length) 以凹入表形式打印,length初始值为0 Combine_Two_AVL(BSTree *T1, BSTree T2) 合并两棵平衡二叉排序树 Split_AVL(BSTree T, BSTree *T1, BSTree *T2) 拆分两棵平衡二叉树 } (2)存储结构的定义: typedef struct BSTNode { TElemType data; int bf; //结点的平衡因子 struct BSTNode *lchild, *rchild;//左.右孩子指针 }BSTNode, *BSTree;
application/x-rar
攀枝花学院本科学生课程设计任务书 题 目 二叉排序树与平衡二叉树的实现 1、课程设计的目的 使学生进一步理解和掌握课堂上所学各种基本抽象数据类型的逻辑结构、存储结构和操作实现算法,以及它们在程序中的使用方法。 使学生掌握软件设计的基本内容和设计方法,并培养学生进行规范化软件设计的能力。 3) 使学生掌握使用各种计算机资料和有关参考资料,提高学生进行程序设计的基本能力。 2、课程设计的内容和要求(包括原始数据、技术要求、工作要求等) (1) (1)以回车('\n')为输入结束标志,输入数列L,生成一棵二叉排序树T; (2)对二叉排序树T作中序遍历,输出结果; (3)计算二叉排序树T查找成功的平均查找长度,输出结果; (4)输入元素x,查找二叉排序树T,若存在含x的结点,则删该结点,并作中序遍历(执行操作2);否则输出信息“无x”; (5)用数列L,生成平衡的二叉排序树BT:当插入新元素之后,发现当前的二叉排序树BT不是平衡的二叉排序树,则立即将它转换成新的平衡的二叉排序树BT; (6)计算平衡的二叉排序树BT的平均查找长度,输出结果。 3、主要参考文献 [1]刘大有等,《数据结构》(C语言版),高等教育出版社 [2]严蔚敏等,《数据结构》(C语言版),清华大学出版社 [3]William Ford,William Topp,《Data Structure with C++》清华大学出版社 [4]苏仕华等,数据结构课程设计,机械工业出版社 4、课程设计工作进度计划 第1天 完成方案设计与程序框图 第2、3天 编写程序代码 第4天 程序调试分析和结果 第5天 课程设计报告和总结 指导教师(签字) 日期 年 月 日 教研室意见: 年 月 日 学生(签字): 接受任务时间: 年 月 日 注:任务书由指导教师填写。 课程设计(论文)指导教师成绩评定表 题目名称 二叉排序树与平衡二叉树的实现 评分项目 分值 得分 评价内涵 工作 表现 20% 01 学习态度 6 遵守各项纪律,工作刻苦努力,具有良好的科学工作态度。 02 科学实践、调研 7 通过实验、试验、查阅文献、深入生产实践等渠道获取与课程设计有关的材料。 03 课题工作量 7 按期圆满完成规定的任务,工作量饱满。 能力 水平 35% 04 综合运用知识的能力 10 能运用所学知识和技能去发现与解决实际问题,能正确处理实验数据,能对课题进行理论分析,得出有价值的结论。 05 应用文献的能力 5 能独立查阅相关文献和从事其他调研;能提出并较好地论述课题的实施方案;有收集、加工各种信息及获取新知识的能力。 06 设计(实验)能力,方案的设计能力 5 能正确设计实验方案,独立进行装置安装、调试、操作等实验工作,数据正确、可靠;研究思路清晰、完整。 07 计算及计算机应用能力 5 具有较强的数据运算与处理能力;能运用计算机进行资料搜集、加工、处理和辅助设计等。 08 对计算或实验结果的分析能力(综合分析能力、技术经济分析能力) 10 具有较强的数据收集、分析、处理、综合的能力。 成果 质量 45% 09 插图(或图纸)质量、篇幅、设计(论文)规范化程度 5 符合本专业相关规范或规定要求;规范化符合本文件第五条要求。 10 设计说明书(论文)质量 30 综述简练完整,有见解;立论正确,论述充分,结论严谨合理;实验正确,分析处理科学。 11 创新 10 对前人工作有改进或突破,或有独特见解。 成绩 指导教师评语 指导教师签名: 年 月 日 摘要及关键字 本程序中的数据采用“树形结构”作为其数据结构。具体采用的是“二叉排序树”。 二叉排序树(又称二叉查找树):(1)若左子树不空,则左子树上所有节点的值均小于它的根结点的值;(2)若右子树不空,则右子树上所有节点均大于它的根结点的值;(3)它的左右子树分别为二叉排序树。 二叉平衡树:若不是空树,则(1)左右子树都是平衡二叉树;(2)左右子树的深度之差的绝对值不超过1。 本次实验是利用二叉排序树和平衡二叉树达到以下目的:(1)以回车('\n')为输入结束标志,输入数列L,生成一棵二叉排序树T;(2)对二叉排序树T作中序遍历,输出结果;(3)计算二叉排序树T查找成功的平均查找长度,输出结果; (4)输入元素x,查找二叉排序树T,若存在含x的结点,则删该结点,并作中序遍历(执行操作2);否则输出信息“无x”;(5)用数列L,生成平衡的二叉排序树BT:当插入新元素之后,发现当前的二叉排序树BT不是平衡的二叉排序树,则立即将它转换成新的平衡的二叉排序树BT; (6)计算平衡的二叉排序树BT的平均查找长度,输出结果。 关键字:数列L,结点,二叉排序树,平衡二叉树        目录 摘要…………………………………………………………………………… 3 1 绪论………………………………………………………………………… 5 1.1 课程设计的目的…………………………………………………………… 5 1.2 相关知识的阐述…………………………………………………………… 5 1.2.1一位数组的存储结构…………………………………………………… 5 1.2.2建立二叉排序树……………………………………………………… 5 1.2.3中序遍历二叉树………………………………………………………… 5 1.2.4平均查找长度…………………………………………………………… 6 1.2.5平均二叉树(AVL树)…………………………………………………… 6 1.2.6平衡因子………………………………………………………………… 7 1.2.7平衡二叉树的调整方法…………………………………………………… 7 2 方案设计……………………………………………………………… 8 2.1 模块功能………………………………………………………………………8 3 算法设计…………………………………………………………………… 8 3.1 算法流程图…………………………………………………………………… 8 4 详细设计……………………………………………………………… 10 4.1 主程序………………………………………………………………… 10 4.2 定义二叉树结构……………………………………………………………… 11 4.3 建立二叉树…………………………………………………………………… 11 4.3.1二叉排序树的查找…………………………………………………………11 4.3.2二叉排序树的插入…………………………………………………………11 4.4 中序遍历…………………………………………………………………12 4.5 平均查找长度…………………………………………………………………12 4.6 删除节点…………………………………………………………………12 4.7 判断平衡二叉树……………………………………………………………… 13 5 调试分析………………………………………………………………………… 14 5.1 时间复杂度的分析………………………………………………………………14 5.2 运行结果………………………………………………………………… 14 5.3 结果分析………………………………………………………………… 15 6 课程设计总结…………………………………………………………………… 16 参考文献………………………………………………………………………… 17 1 绪论 1.1 课程设计的目的 (1)使学生进一步理解和掌握课堂上所学各种基本抽象数据类型的逻辑结构、存储结构和操作实现算法,以及它们在程序中的使用方法。 (2)使学生掌握软件设计的基本内容和设计方法,并培养学生进行规范化软件设计的能力。 (3)使学生掌握使用各种计算机资料和有关参考资料,提高学生进行程序设计的基本能力。 1.2 相关知识的阐述 1.2.1 一维数组的存储结构 建立二插排序树,首先用一个一维数组记录下读入的数据,然后再用边查找边插入的方式将数据一一对应放在完全二叉树相应的位置,为空的树结点用“0” 补齐。 1.2.2 建立二叉排序树 二叉排序树是一种动态树表。其特点是:树的结构通常不是一次生成的,而是在查找过程中,当树中不存在关键字等于给定值的节点时再进行插入。新插入的结点一定是一个新添加的叶子节点,并且是查找不成功时查找路径上访问的最后一个结点的左孩子或右孩子结点。 插入算法: 首先执行查找算法,找出被插结点的父亲结点; 判断被插结点是其父亲结点的左、右儿子。将被插结点作为叶子结点插入; 若二叉树为空,则首先单独生成根结点。 注意:新插入的结点总是叶子结点。 1.2.3 中序遍历二叉树 中序遍历二叉树算法的框架是: 若二叉树为空,则空操作; 否则(1)中序遍历左子树(L); (2)访问根结点(V); (3)中序遍历右子树(R)。 中序遍历二叉树也采用递归函数的方式,先访问左子树2i,然后访问根结点i,最后访问右子树2i+1.先向左走到底再层层返回,直至所有的结点都被访问完毕。 1.2.4 平均查找长度 计算二叉排序树的平均查找长度时,采用类似中序遍历的递归方式,用s记录总查找长度,j记录每个结点的查找长度,s置初值为0,采用累加的方式最终得到总查找长度s。平均查找长度就等于s/i(i为树中结点的总个数)。  假设在含有n(n>=1)个关键字的序列中,i个关键字小于第一个关键字,n-i-1个关键字大于第一个关键字,则由此构造而得的二叉排序树在n个记录的查找概率相等的情况下,其平均查找长度为:          ASL(n,i)=[1+i*(P(i)+1)+(n-i-1)(P(n-i-1)+1)]/n 其中P(i)为含有i个结点的二叉排序树的平均查找长度,则P(i)+1为查找左子树中每个关键字时所用比较次数的平均值,P(n-i-1)+1为查找右子树中每个关键字时所用比较次数的平均值。又假设表中n个关键字的排列是“随机”的,即任一个关键字在序列中将是第1个,或第2个,…,或第n个的概率相同,则可对上式从i等于0至n-1取平均值。最终会推导出:          当n>=2时,ASL(n)<=2(1+1/n)ln(n) 由此可见,在随机的情况下,二叉排序树的平均查找长度和log(n)是等数量级的。 另外,含有n个结点的二叉排序树其判定树不是惟一的。对于含有同样一组结点的表,由于结点插入的先后次序不同,所构成的二叉排序树的形态和深度也可能不同。 而在二叉排序树上进行查找时的平均查找长度和二叉树的形态有关:  ①在最坏情况下,二叉排序树是通过把一个有序表的n个结点依次插入而生成的,此时所得的二叉排序树蜕化为棵深度为n的单支树,它的平均查找长度和单链表上的顺序查找相同,亦是(n+1)/2。  ②在最好情况下,二叉排序树在生成的过程中,树的形态比较匀称,最终得到的是一棵形态与二分查找的判定树相似的二叉排序树,此时它的平均查找长度大约是lgn。  ③插入、删除和查找算法的时间复杂度均为O(lgn)。 1.2.5 平衡二叉树( AVL树 ) ①平衡二叉树(Balanced Binary Tree)是指树中任一结点的左右子树的高度大致相同。     ②任一结点的左右子树的高度均相同(如满二叉树),则二叉树是完全平衡的。通常,只要二叉树的高度为O(1gn),就可看作是平衡的。     ③平衡的二叉排序树指满足BST性质的平衡二叉树。     ④AVL树中任一结点的左、右子树的高度之差的绝对值不超过1。在最坏情况下,n个结点的AVL树的高度约为1.44lgn。而完全平衡的二叉树高度约为lgn,AVL树是最接近最优的。 1.2.6 平衡因子 二叉树上任一结点的左子树深度减去右子树的深度称为该结点的平衡因子,易知平衡二叉树中所有结点的因子只可能为0,-1和1。 平衡二叉排序树的在平衡因子绝对值等于2时开始调整到绝对值为1或0,在平衡因子绝对值为2时,二叉排序树会出现四种不同的情况的树形,因此这时需要分别单独讨论来降低平衡因子。 1.2.7 平衡二叉树的调整方法   平衡二叉树是在构造二叉排序树的过程中,每当插入一个新结点时,首先检查是否因插入新结点而破坏了二叉排序树的平衡性,若是,则找出其中的最小不平衡子树,在保持二叉排序树特性的前提下,调整最小不平衡子树中各结点之间的链接关系,进行相应的旋转,使之成为新的平衡子树。具体步骤如下: (1)每当插入一个新结点,从该结点开始向上计算各结点的平衡因子,即计算该结点的祖先结点的平衡因子,若该结点的祖先结点的平衡因子的绝对值均不超过1,则平衡二叉树没有失去平衡,继续插入结点; (2)若插入结点的某祖先结点的平衡因子的绝对值大于1,则找出其中最小不平衡子树的根结点; (3)判断新插入的结点与最小不平衡子树的根结点的关系,确定是哪种类型的调整; (4)如果是LL型或RR型,只需应用扁担原理旋转一次,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;如果是LR型或LR型,则需应用扁担原理旋转两次,第一次最小不平衡子树的根结点先不动,调整插入结点所在子树,第二次再调整最小不平衡子树,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突; (5)计算调整后的平衡二叉树中各结点的平衡因子,检验是否因为旋转而破坏其他结点的平衡因子,以及调整后的平衡二叉树中是否存在平衡因子大于1的结点。 2 方案设计 2.1 模块功能 1.建立二叉树:要求以回车('\n')为输入结束标志,输入数列L,生成一棵二叉排序树T。 2.中序遍历并输出结果:要求将第一步建立的二叉树进行中序遍历,并将结果输出。 3.平均查找长度并输出:要求计算二叉排序树T查找成功的平均查找长度,输出结果。 4.删除节点:要求输入元素x,查找二叉排序树T,若存在含x的结点,则删该结点,并作中序遍历(执行操作2);否则输出信息“无x”。 5.生成平衡二叉树:要求用数列L,生成平衡的二叉排序树BT:当插入新元素之后,发现当前的二叉排序树BT不是平衡的二叉排序树,则立即将它转换成新的平衡的二叉排序树BT; 6.平均查找长度:计算平衡的二叉排序树BT的平均查找长度,输出结果。 3 算法设计 3.1 算法流程图 建立二叉树流程图: YES NO 主程序流程图: 中序遍历流程图: 删除节点流程图: 4 详细设计 4.1 主程序 void main() { node T=NULL; int num; int s=0,j=0,i=0; int ch=0; node p=NULL; printf("请输入一组数字并输入0为结束符:"); do{ scanf("%d",&num); if(!num) printf("你成功完成了输入!\n"); else insertBST(&T,num); }while(num); printf("\n\n---操作菜单---\n"); printf("\n 0: 退出" ); printf("\n 1: 中序遍历"); printf("\n 2: 平均查找长度"); printf("\n 3: 删除"); printf("\n 4: 判断是否是平衡二叉树"); while(ch==ch) { printf("\n 选择操作并继续:"); scanf("%d",&ch); switch(ch){ case 0: exit(0); /*0--退出*/ case 1: printf(" 中序遍历结果是:\n "); inorderTraverse(&T); break; case 2: s=0;j=0;i=0; calculateASL(&T,&s,&j,i); printf(" ASL=%d/%d",s,j); break; case 3: printf(" 请输入你想删除的数字:"); scanf("%d",&num); if(searchBST(T,num,NULL,&p)) { T=Delete(T,num); printf(" 你已成功删除该数字!\n "); inorderTraverse(&T); else printf(" 没有你想要删除的节点 %d!",num); break; case 4: i=0; balanceBST(T,&i); if(i==0) printf(" OK!这是平衡二叉树!"); else printf(" NO!"); break; default: printf("你的输入有误!请重新输入!\n"); break; } } } 4.2 定义二叉树结构 #include typedef struct Tnode { int data; struct Tnode *lchild,*rchild; }*node,BSTnode; 4.3 建立二叉树 4.3.1 二叉排序树的查找 searchBST(node t,int key,node f,node *p){ /*在根指针t所指二叉排序树中递归地查找其关键字等于key的数据元素,若查找成功,则指针p指向该数据元素节点,并返回(1),否则指针p指向查找路径上访问的最后一个节点并返回(0),指针f指向t的双亲,其初始调用值为NULL*/ if(!t) {*p=f;return (0);} /*查找不成功*/ else if(key==t->data) {*p=t;return (1);} /*查找成功*/ else if(keydata) searchBST(t->lchild,key,t,p); /*在左子树中继续查找*/ else searchBST(t->rchild,key,t,p); /*在右子树中继续查找*/ } 4.3.2 二叉排序树的插入 insertBST(node *t,int key){ /*当二叉排序树t中不存在关键字等于key的数据元素时,插入key并返回(1),否则返回(0)*/ node p=NULL,s=NULL; if(!searchBST(*t,key,NULL,&p)) /*查找不成功 */ { s=(node)malloc(sizeof(BSTnode)); s->data=key; s->lchild=s->rchild=NULL; if(!p) *t=s; /*被插入节点*s为新的根节点*/ else if(keydata) p->lchild=s; /*被插节点*s为左孩子*/ else p->rchild=s; /*被插节点*s为右孩子*/ return (1); } else return (0); /*树中已有关键字相同的节点,不再插入*/ } 4.4 中序遍历 inorderTraverse(node *t) /*中序遍历*/ { if(*t){ if(inorderTraverse(&(*t)->lchild)) { printf("%d ",(*t)->data); if(inorderTraverse(&(*t)->rchild)); } } else return(1); } 4.5 平均查找长度 calculateASL(node *t,int *s,int *j,int i) /*计算平均查找长度*/ {if(*t){ i++; *s=*s+i; if(calculateASL(&(*t)->lchild,s,j,i)) { (*j)++; if(calculateASL(&(*t)->rchild,s,j,i)) {i--; return(1);} } } else return(1); } 4.6 删除节点 node Delete(node t,int key) { /*若二叉排序树t中存在关键字等于key的数据元素时,则删除该数据元素节点 */ node p=t,q=NULL,s,f; while(p!=NULL) { if(p->data==key) break; q=p; if(p->data>key) p=p->lchild; else p=p->rchild; } if(p==NULL) return t; if(p->lchild==NULL) { if(q==NULL) t=p->rchild; else if(q->lchild==p) q->lchild=p->rchild; else q->rchild=p->rchild; free(p); } else{ f=p; s=p->lchild; while(s->rchild) { f=s; s=s->rchild; } if(f==p) f->lchild=s->lchild; else f->rchild=s->lchild; p->data=s->data; free (s); } return t; } 4.7 判断平衡二叉树 int balanceBST(node t,int *i) /*判断平衡二叉树*/ { int dep1,dep2; if(!t) return(0); else { dep1=balanceBST(t->lchild,i); dep2=balanceBST(t->rchild,i); } if((dep1-dep2)>1||(dep1-dep2)dep2) return(dep1+1); else return(dep2+1); } 5 调试分析 5.1 时间复杂度的分析 为了保证二叉排序树的高度为lgn,从而保证然二叉排序树上实现的插入、删除和查找等基本操作的时间复杂度为O(lgn)。 5.2 运行结果 图5.1.1 调试界面 在程序调试过程当中,编译时并没有报错,但是运行时总是出错,在查阅资料和同学的帮助下,发现程序未对数组初始化。添加数组初始化代码: s=(node)malloc(sizeof(BSTnode)) 输入一组数列,以结0结束: 图5.2.2运行界面一 中序遍历: 图5.2.3运行界面二 计算平均查找长度 图5.2.4运行界面三 删除已有结点: 图5.2.5运行界面四 删除失败: 图5.2.6运行界面五 判断是否是平衡二叉树: 图5.2.7运行界面六 5.3 结果分析 通过运行程序和严密的求证,运行结果无误,不过对于转换平衡二叉树和平衡二叉树平均查找长度未能实现,同时也无法实现图像显示。 6 课程设计总结 在这一周的课程设计中,其实对我来说还是收获颇多。这不光提高了我的程序设计能力,更为我的就业增加了筹码。对我们来说,独立完成这样课程设计是比较困难,其中包括模块的组成分析和模块功能的实现。最后我不得不从网上下载源程序,借助课本,困难地将几个模块串起来。最后终于完成了自己的课程设计。 这次实验中我也出现过一些比较严重的错误。在用一维数组顺序表结构编写程序时我错误的运用静态链表来实现函数功能。这是我对基本概念理解的模糊不清造成的。我原以为只要采用一维数组作为存储结构它就一定也是顺序表结构,而实质上这根本是两个不相干的概念。后来在同学的指点下我意识到自己的错误。不过收获也很不少。至少我又练习了运用静态链表来实现同样的功能,同时我也发现两者在很多函数上是互通的,只需稍作修改即可移植。 另外程序的不足之处是不能实现对0这个数字的存储,可以通过改变数字的存储结构方式来实现,如使用二叉链表来作为数据的存储结构,即可实现该功能。还有就是可能自己学的还不够,对于最后两个要求未能完成,不得不说这是自己学艺不精。 现在觉得以前我对数据结构的认识是那么的肤浅,因此我下定决心寒假一定好好的把数据结构复习一遍。而且本次课程设计不光增强了我程序调试的能力,还有在面对一个较大的程序要冷静,不要浮躁,先分析模块要实现的功能,再把模块划分,最后到一个一个得模块实现,并且要不断地练习,这样,一个大的程序对我来说将不成问题。 参考文献 [1]刘大有等,《数据结构》(C语言版),高等教育出版社 [2]严蔚敏等,《数据结构》(C语言版),清华大学出版社 [3]William Ford,William Topp,《Data Structure with C++》清华大学出版社 [4]苏仕华等,数据结构课程设计,机械工业出版社

大家在看

recommend-type

任务分配基于matlab拍卖算法多无人机多任务分配【含Matlab源码 3086期】.zip

代码下载:完整代码,可直接运行 ;运行版本:2014a或2019b;若运行有问题,可私信博主; **仿真咨询 1 各类智能优化算法改进及应用** 生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化 **2 机器学习和深度学习方面** 卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断 **3 图像处理方面** 图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知 **4 路径规划方面** 旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化 **5 无人机应用方面** 无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配 **6 无线传感器定位及布局方面** 传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化 **7 信号处理方面** 信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化 **8 电力系统方面** 微电网优化、无功优化、配电网重构、储能配置 **9 元胞自动机方面** 交通流 人群疏散 病毒扩散 晶体生长 **10 雷达方面** 卡尔曼滤波跟踪、航迹关联、航迹融合
recommend-type

python大作业基于python实现的心电检测源码+数据+详细注释.zip

python大作业基于python实现的心电检测源码+数据+详细注释.zip 【1】项目代码完整且功能都验证ok,确保稳定可靠运行后才上传。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通,帮助解答。 【2】项目主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 【3】项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 【4】如果基础还行,或热爱钻研,可基于此项目进行二次开发,DIY其他不同功能,欢迎交流学习。 【备注】 项目下载解压后,项目名字和项目路径不要用中文,否则可能会出现解析不了的错误,建议解压重命名为英文名字后再运行!有问题私信沟通,祝顺利! python大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zip python大作业基于python实现的心电检测源码+数据+详细注释.zip
recommend-type

遗传算法改进粒子群算法优化卷积神经网络,莱维飞行改进遗传粒子群算法优化卷积神经网络,lv-ga-pso-cnn网络攻击识别

基于MATLAB编程实现,在莱维飞行改进遗传粒子群算法优化卷积神经网络,既在粒子群改进卷积神经网络的基础上,用遗传算法再改进粒子群,提供粒子群的寻优能力,从而达到寻优更佳卷积神经网络的目的,然后再用莱维飞行改进遗传粒子群算法,进一步提供粒子群的寻优能力,从而找到最佳的卷积神经网络,然后改进的卷积神经网络进行网络攻击类型识别,并输出测试准确率,混淆矩阵等,代码齐全,数据完整,可以直接运行
recommend-type

轮轨接触几何计算程序-Matlab-2024.zip

MATLAB实现轮轨接触几何计算(源代码和数据) 数据输入可替换,输出包括等效锥度、接触点对、滚动圆半径差、接触角差等。 运行环境MATLAB2018b。 MATLAB实现轮轨接触几何计算(源代码和数据) 数据输入可替换,输出包括等效锥度、接触点对、滚动圆半径差、接触角差等。 运行环境MATLAB2018b。 MATLAB实现轮轨接触几何计算(源代码和数据) 数据输入可替换,输出包括等效锥度、接触点对、滚动圆半径差、接触角差等。 运行环境MATLAB2018b。 MATLAB实现轮轨接触几何计算(源代码和数据) 数据输入可替换,输出包括等效锥度、接触点对、滚动圆半径差、接触角差等。 运行环境MATLAB2018b。主程序一键自动运行。 MATLAB实现轮轨接触几何计算(源代码和数据) 数据输入可替换,输出包括等效锥度、接触点对、滚动圆半径差、接触角差等。 运行环境MATLAB2018b。主程序一键自动运行。 MATLAB实现轮轨接触几何计算(源代码和数据) 数据输入可替换,输出包括等效锥度、接触点对、滚动圆半径差、接触角差等。 运行环境MATLAB2018b。主程序一键自动运行。
recommend-type

台达变频器资料.zip

台达变频器

最新推荐

recommend-type

STP生成树协议工作原理

STP生成树协议工作原理 STP(Spanning Tree Protocol,生成树协议)是一种二层网络协议,用于防止网络中的环路和广播风暴。STP 协议的主要作用是逻辑上断开环路,防止广播风暴的产生,在一个交换网络中有可能会出现...
recommend-type

单片机串行口接收和发送数据的过程简述

在发送数据的过程中,首先,我们需要将要发送的数据写入单片机的串行发送缓冲器SBUF(通常地址为99H)。当执行这条写入SBUF的指令时,单片机会开始启动串行发送过程。发送数据的速度由波特率决定,一般为fosc/12,...
recommend-type

C#中哈希表(HashTable)用法实例详解(添加/移除/判断/遍历/排序等)

`HashTable`本身是无序的,但如果需要排序,可以先将键值对转换为`DictionaryEntry`数组,然后使用`Array.Sort()`方法对键进行排序。或者,可以使用`SortedList`或`Dictionary, TValue&gt;`,它们提供有序的键值对存储...
recommend-type

简述语音识别的实现过程.pdf

这项技术的实现过程复杂而精细,涵盖了多个步骤和领域,包括信号处理、模式匹配、自然语言理解和人工智能。 首先,语音识别的核心在于将原始的声波信号转化为机器可理解的形式。这一过程通常始于声音的采集,通过...
recommend-type

基于springboot的酒店管理系统源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"