矩形排样模拟退火算法代码
时间: 2023-12-20 20:30:39 浏览: 95
利用模拟退火算法和遗传算法进行矩形算法排样优化
5星 · 资源好评率100%
根据提供的引用[1],以下是矩形排样模拟退火算法的Python代码示例:
```python
import math
import random
# 矩形类
class Rectangle:
def __init__(self, width, height):
self.width = width
self.height = height
# 排样类
class Packing:
def __init__(self, rectangles):
self.rectangles = rectangles
self.width = sum([r.width for r in rectangles])
self.height = max([r.height for r in rectangles])
self.area = self.width * self.height
# 计算排样的适应度
def fitness(self):
return self.area
# 随机生成初始解
def random_solution(self):
x = 0
y = 0
solution = []
for r in self.rectangles:
if x + r.width > self.width:
x = 0
y += r.height
solution.append((x, y))
x += r.width
return solution
# 交换两个矩形的位置
def swap_rectangles(self, solution):
i = random.randint(0, len(solution) - 1)
j = random.randint(0, len(solution) - 1)
while i == j:
j = random.randint(0, len(solution) - 1)
new_solution = solution.copy()
new_solution[i], new_solution[j] = new_solution[j], new_solution[i]
return new_solution
# 旋转矩形
def rotate_rectangle(self, solution):
i = random.randint(0, len(solution) - 1)
new_solution = solution.copy()
x, y = new_solution[i]
r = self.rectangles[i]
new_solution[i] = (x, y, not r.rotated)
return new_solution
# 扰动产生新解
def perturb(self, solution):
if random.random() < 0.5:
return self.swap_rectangles(solution)
else:
return self.rotate_rectangle(solution)
# 模拟退火算法
def simulated_annealing(self, initial_temperature=1000, cooling_rate=0.95, stopping_temperature=1e-8):
current_solution = self.random_solution()
current_fitness = self.fitness()
best_solution = current_solution
best_fitness = current_fitness
temperature = initial_temperature
while temperature > stopping_temperature:
new_solution = self.perturb(current_solution)
new_fitness = self.fitness()
delta_fitness = new_fitness - current_fitness
if delta_fitness < 0 or math.exp(-delta_fitness / temperature) > random.random():
current_solution = new_solution
current_fitness = new_fitness
if current_fitness < best_fitness:
best_solution = current_solution
best_fitness = current_fitness
temperature *= cooling_rate
return best_solution
```
阅读全文