image_resized = cv2.resize(original, (resize_HW, resize_HW))
时间: 2023-11-07 17:53:21 浏览: 224
根据提供的引用内容,tf.image.resize_with_pad()函数用于调整图像的大小并将其填充到目标宽度和高度。它会保持图像的纵横比不变,以防止失真,并根据需要调整图像的大小,然后用零进行填充以匹配请求的尺寸。而tf.image.resize()函数用于使用指定的方法调整图像的大小,但如果原始图像的纵横比与目标尺寸不同,则会发生失真。
所以,根据你提供的代码,image_resized = cv2.resize(original, (resize_HW, resize_HW))是使用cv2库中的resize函数来将图像original调整为大小为(resize_HW, resize_HW)的图像。这里没有使用tf.image.resize_with_pad()或tf.image.resize()函数。
相关问题
def preprocess_img(img_rgb_orig, HW=(256,256), resample=3): # return original size L and resized L as torch Tensors img_rgb_rs = resize_img(img_rgb_orig, HW=HW, resample=resample) img_lab_orig = color.rgb2lab(img_rgb_orig) img_lab_rs = color.rgb2lab(img_rgb_rs) img_l_orig = img_lab_orig[:,:,0] img_l_rs = img_lab_rs[:,:,0] tens_orig_l = torch.Tensor(img_l_orig)[None,None,:,:] tens_rs_l = torch.Tensor(img_l_rs)[None,None,:,:] return (tens_orig_l, tens_rs_l)
这段代码实现了一个图像的预处理过程,包括将原始的 RGB 图像转换为 Lab 颜色空间的图像、将 Lab 图像中的亮度通道提取出来作为单独的 L 通道图像、对 L 通道图像进行大小调整(resize)以适应模型需要的输入大小(HW),最后将调整后的 L 通道图像转换为 PyTorch 的 Tensor 格式并返回。
具体来说,输入参数包括:原始的 RGB 图像(img_rgb_orig)、调整后的 L 通道图像大小(HW)和调整方法(resample)。其中,调整方法 resample 默认为 3,表示使用 Lanczos 滤波器进行调整。该函数的输出为:原始大小的 L 通道图像的 Tensor 格式(tens_orig_l)和调整后的 L 通道图像的 Tensor 格式(tens_rs_l)。
需要注意的是,这段代码仅实现了图像预处理的一部分,具体的使用场景需要根据实际情况进行调整。
def resize_norm_img(self, img, max_wh_ratio): imgC, imgH, imgW = self.rec_image_shape assert imgC == img.shape[2] imgW = int((32 * max_wh_ratio)) h, w = img.shape[:2] ratio = w / float(h) if math.ceil(imgH * ratio) > imgW: resized_w = imgW else: resized_w = int(math.ceil(imgH * ratio)) resized_image = cv2.resize(img, (resized_w, imgH)) resized_image = resized_image.astype('float32') # [0, 255] -> [0, 1] resized_image = resized_image.transpose((2, 0, 1)) / 255 # [0, 1] -> [-0.5, 0.5] resized_image -= 0.5 # [-0.5, 0.5] -> [-1, 1] resized_image /= 0.5 padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) padding_im[:, :, 0:resized_w] = resized_image return padding_im
这段代码是一个OCR识别模型中的图像预处理部分。它的作用是将输入的图像进行缩放、归一化和填充,以适配模型的输入要求。
具体地,它首先确定了输入图像的通道数、高度和宽度,然后根据最大宽高比限制计算出缩放后的宽度。接着,它计算图像的宽高比,并根据它来确定缩放后的高度和宽度。接着,它将缩放后的图像进行归一化,将像素值从[0, 255]映射到[0, 1],然后将像素值从[0, 1]映射到[-0.5, 0.5],最后将像素值从[-0.5, 0.5]映射到[-1, 1]。最后,它将归一化后的图像填充到指定的高度和宽度,以适配模型的输入要求。
这段代码的作用是将输入图像转换为模型可以接受的格式,并且保证图像的信息不会丢失。
阅读全文