c语言递推计算斐波那契数列

时间: 2023-12-21 19:31:30 浏览: 33
以下是使用C语言递推计算斐波那契数列的代码示例: ```c #include <stdio.h> int fibonacci(int n) { int fib[n+1]; fib[0] = 1; fib[1] = 1; for (int i = 2; i <= n; i++) { fib[i] = (fib[i-1] + fib[i-2]) % 10007; } return fib[n]; } int main() { int n = 10; // 你可以根据需要修改n的值 int result = fibonacci(n); printf("Fibonacci数列第%d项除以10007的余数是:%d\n", n, result); return 0; } ``` 这段代码中,我们定义了一个`fibonacci`函数,该函数接受一个整数参数n,计算并返回斐波那契数列的第n项除以10007的余数。在`main`函数中,我们调用`fibonacci`函数并打印结果。
相关问题

c语言斐波那契数列递推方法

C语言中斐波那契数列可以使用递推方法进行计算。递推方法是通过定义一个初始的斐波那契数列,然后根据前两个数的和计算下一个数,以此类推得到整个数列。 以下是使用递推方法计算斐波那契数列的C语言代码示例: ```c #include <stdio.h> int fibonacci(int n) { int fib[n+1]; fib[0] = 0; fib[1] = 1; for (int i = 2; i <= n; i++) { fib[i] = fib[i-1] + fib[i-2]; } return fib[n]; } int main() { int n; printf("请输入要计算的斐波那契数列的项数:"); scanf("%d", &n); int result = fibonacci(n); printf("第 %d 项的斐波那契数列值为:%d\n", n, result); return 0; } ``` 在上述代码中,我们定义了一个函数`fibonacci`来计算第n项的斐波那契数列值。首先创建一个数组`fib`来存储计算结果,然后通过循环从第2项开始计算每一项的值,直到第n项。最后返回第n项的值。 在`main`函数中,我们通过用户输入确定要计算的斐波那契数列的项数,并调用`fibonacci`函数进行计算,最后输出结果。

C语言斐波那契数列递推

斐波那契数列是一个以0和1开始的数列,后面的每一项是前两项的和。在C语言中,可以通过递归法、迭代法、矩阵求解法以及特殊性质公式法来实现对斐波那契数列的求解。 递归法是一种常见的求解斐波那契数列的方法。下面是一个用C语言实现斐波那契数列递归法的代码示例: ```c int Fibonacci(int x) { if (x == 0) return 0; else if (x == 1) return 1; else return Fibonacci(x - 1) + Fibonacci(x - 2); } ``` 迭代法是另一种求解斐波那契数列的方法。下面是一个用C语言实现斐波那契数列迭代法的代码示例: ```c int Fibonacci(int x) { if (x == 0) return 0; else if (x == 1) return 1; else { int a = 0; int b = 1; int c; for (int i = 2; i <= x; i++) { c = a + b; a = b; b = c; } return b; } } ``` 矩阵求解法是通过矩阵乘法来求解斐波那契数列。由于涉及到矩阵运算,代码实现较为复杂,这里不再给出具体示例。 特殊性质公式法是通过使用特殊性质公式来求解斐波那契数列。具体公式为:F(n) = F(n-1) + F(n-2)。下面是一个用C语言实现斐波那契数列特殊性质公式法的代码示例: ```c int Fibonacci(int n) { int a = 0; int b = 1; int temp; for (int i = 2; i <= n; i++) { temp = b; b = (a + b) % 10007; a = temp; } return b; } ``` 以上就是C语言实现斐波那契数列的四种方法。您可以根据需要选择其中一种方法来求解斐波那契数列。

相关推荐

最新推荐

recommend-type

关于__Federico Milano 的电力系统分析工具箱.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

mlab-upenn 研究小组的心脏模型模拟.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

混合图像创建大师matlab代码.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

中序遍历二叉树-java版本

在Java中,实现二叉树的中序遍历同样可以通过递归来完成。中序遍历的顺序是:首先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。 在这段代码中,Node类定义了二叉树的节点,BinaryTree类包含一个指向根节点的指针和inOrder方法,用于递归地进行中序遍历。printInOrder方法调用inOrder方法并打印出遍历的结果。 在Main类中,我们创建了一个示例二叉树,并调用printInOrder方法来输出中序遍历的结果。输出应该是:4 2 5 1 3,这表示中序遍历的顺序是左子树(4),然后是根节点(2),接着是右子树的左子树(5),然后是右子树的根节点(1),最后是右子树的右子树(3)。
recommend-type

无头单向非循环链表的实现(SList.c)

无头单向非循环链表的实现(函数定义文件)
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

def ObjFun(x,y,beta): # 目标函数 """ Logistic regression loss function :param beta: model parameter vector :param x: feature matrix :param y: label vector :return: loss value """ n = x.shape[0] p = x.shape[1] pred = 1 / (1 + np.exp(-np.dot(x, beta))) pred = np.clip(pred, 1e-15, 1 - 1e-15) # 将预测值限制在一个很小的区间内 ObjVal = -np.sum(y * np.log(pred) + (1 - y) * np.log(1 - pred)) / n return ObjVal

好的,根据上面的目标函数,我们可以推导出其对应的梯度向量函数,如下所示: def gradient(x, y, beta): """ Compute gradient of the logistic regression loss function :param beta: model parameter vector :param x: feature matrix :param y: label vector :return: gradient vector """ n = x.shape[0] pred = 1 /
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。