Hadoop中map 和 spark中 map的区别
时间: 2024-04-15 17:26:30 浏览: 43
hadoop、storm、spark的区别对比
Hadoop中的Map和Spark中的map虽然名称相同,但在两个框架中具有不同的含义和功能。
在Hadoop中,Map是指MapReduce框架中的一个阶段。在这个阶段,输入数据被切分成多个独立的数据块,并由多个Map任务并行处理。每个Map任务接收一个输入键值对,并生成一组中间键值对作为输出。Map任务是并行执行的,可以在不同的计算节点上运行。
而在Spark中,map是指RDD(弹性分布式数据集)上的一个转换操作。它接收一个函数作为参数,并将该函数应用于RDD中的每个元素,生成一个新的RDD。这意味着,对于RDD中的每个元素,都会使用指定的函数进行转换,并将转换后的结果作为新的RDD中的元素。
区别总结如下:
1. Hadoop中的Map是一个阶段,用于将输入数据切分、并行处理并生成中间键值对。
2. Spark中的map是一个转换操作,用于对RDD中的每个元素应用函数,并生成一个新的RDD。
3. Hadoop的Map运行在MapReduce框架中,而Spark的map是用于操作RDD的方法。
4. Hadoop的Map阶段是一次性的,而Spark的map操作可以连续应用于多个转换操作来构建复杂的计算流程。
阅读全文