pytorch保存模型可以保存学习率和batchsize等超参数么
时间: 2024-10-08 16:18:35 浏览: 40
PyTorch 中保存模型通常只保存模型的权重(参数)以及训练状态,如优化器的状态(optimizer.state_dict),它们包含了训练过程的一些信息,比如当前的学习率(learning rate)。学习率和 batch size 等超参数本身并不是模型的一部分,而是配置的一部分,通常会存储在外部脚本或者日志文件中,而不是直接保存到模型文件中。
当你需要记录超参数时,可以在训练完成后将它们一起保存在一个配置文件或字典中,便于后续加载和复现实验。例如,你可以使用 Python 的 JSON 或者 YAML 库来保存这些信息:
```python
import torch
import json
# 超参数
hyperparams = {
'learning_rate': learning_rate,
'batch_size': batch_size
}
# 存储到文件
with open('hyperparameters.json', 'w') as f:
json.dump(hyperparams, f)
# 当需要加载时
with open('hyperparameters.json', 'r') as f:
loaded_hyperparams = json.load(f)
```
相关问题
编写pytorch代码,定义LSTMAttention模型,在参数空间定义学习率、batch_size、权重衰减、神经元个数、dropout、自注意力等超参数,定义一个CPSO优化算法,定义一个适应度函数fitness_function,用于评估LSTMAttention模型在给定超参数下的性能,用CPSO算法优化模型中超参数,找到最优的超参数组合,并将最优的超参数传递给模型
好的,我来解答这个问题。首先,我们需要定义LSTMAttention模型,代码如下:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class LSTMAttention(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(LSTMAttention, self).__init__()
self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True)
self.attention_fc = nn.Linear(hidden_dim, 1)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
out, (h_n, c_n) = self.lstm(x)
attention_weights = F.softmax(self.attention_fc(out), dim=1)
context_vector = torch.sum(attention_weights * out, dim=1)
output = self.fc(context_vector)
return output
```
接下来,我们需要定义模型的超参数空间和优化算法。这里我们使用CPSO算法来优化模型的超参数,代码如下:
```python
import random
class CPSO:
def __init__(self, num_particles, dim, max_iter, lr):
self.num_particles = num_particles
self.dim = dim
self.max_iter = max_iter
self.lr = lr
self.particles = [[random.uniform(0, 1) for _ in range(dim)] for _ in range(num_particles)]
self.velocities = [[0 for _ in range(dim)] for _ in range(num_particles)]
self.pbest_positions = self.particles.copy()
self.pbest_fitnesses = [float('inf') for _ in range(num_particles)]
self.gbest_position = [0 for _ in range(dim)]
self.gbest_fitness = float('inf')
def update_position(self, x, v):
return [xi + vi for xi, vi in zip(x, v)]
def update_velocity(self, x, v, pbest, gbest):
w = 0.7
c1 = 1.4
c2 = 1.4
r1 = random.uniform(0, 1)
r2 = random.uniform(0, 1)
v_new = [w * vi + c1 * r1 * (pbest[i] - xi) + c2 * r2 * (gbest[i] - xi) for i, xi, vi in zip(range(self.dim), x, v)]
return v_new
def evaluate_fitness(self, fitness_function):
fitnesses = []
for particle in self.particles:
fitness = fitness_function(particle)
fitnesses.append(fitness)
if fitness < self.pbest_fitnesses[self.particles.index(particle)]:
self.pbest_fitnesses[self.particles.index(particle)] = fitness
self.pbest_positions[self.particles.index(particle)] = particle
if fitness < self.gbest_fitness:
self.gbest_fitness = fitness
self.gbest_position = particle
return fitnesses
def optimize(self, fitness_function):
for i in range(self.max_iter):
fitnesses = self.evaluate_fitness(fitness_function)
for particle, velocity in zip(self.particles, self.velocities):
velocity = self.update_velocity(particle, velocity, self.pbest_positions[self.particles.index(particle)], self.gbest_position)
particle = self.update_position(particle, velocity)
self.velocities = [self.update_velocity(particle, velocity, self.pbest_positions[self.particles.index(particle)], self.gbest_position) for particle, velocity in zip(self.particles, self.velocities)]
self.particles = [self.update_position(particle, velocity) for particle, velocity in zip(self.particles, self.velocities)]
return self.gbest_position
```
接下来,我们需要定义适应度函数fitness_function,用于评估LSTMAttention模型在给定超参数下的性能。这里我们使用交叉熵损失函数和Adam优化算法来训练模型,代码如下:
```python
import torch.optim as optim
import torch.utils.data as data
def fitness_function(hyperparameters):
# set hyperparameters
learning_rate = hyperparameters[0]
batch_size = int(hyperparameters[1] * 128)
weight_decay = hyperparameters[2]
hidden_dim = int(hyperparameters[3] * 256)
dropout = hyperparameters[4]
num_heads = int(hyperparameters[5] * 8)
# define model
model = LSTMAttention(input_dim=10, hidden_dim=hidden_dim, output_dim=2)
# define optimizer and loss function
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
criterion = nn.CrossEntropyLoss()
# train model
for epoch in range(10):
for i, (x, y) in enumerate(train_loader):
optimizer.zero_grad()
output = model(x)
loss = criterion(output, y)
loss.backward()
optimizer.step()
# evaluate model
correct = 0
total = 0
with torch.no_grad():
for x, y in test_loader:
output = model(x)
_, predicted = torch.max(output.data, 1)
total += y.size(0)
correct += (predicted == y).sum().item()
accuracy = correct / total
return accuracy
```
最后,我们可以使用CPSO算法来优化模型的超参数,找到最优的超参数组合,并将最优的超参数传递给模型,代码如下:
```python
# define train and test data loaders
train_loader = data.DataLoader(train_data, batch_size=128, shuffle=True)
test_loader = data.DataLoader(test_data, batch_size=128, shuffle=True)
# define hyperparameters space and CPSO optimizer
hyperparameters_space = [(1e-5, 1e-1), (0.1, 1), (1e-5, 1e-1), (0.1, 1), (0, 0.5), (0.1, 1)]
num_particles = 20
dim = len(hyperparameters_space)
max_iter = 50
lr = 0.1
cpso = CPSO(num_particles, dim, max_iter, lr)
# optimize hyperparameters using CPSO algorithm
best_hyperparameters = cpso.optimize(fitness_function)
# set best hyperparameters to model
learning_rate = best_hyperparameters[0]
batch_size = int(best_hyperparameters[1] * 128)
weight_decay = best_hyperparameters[2]
hidden_dim = int(best_hyperparameters[3] * 256)
dropout = best_hyperparameters[4]
num_heads = int(best_hyperparameters[5] * 8)
model = LSTMAttention(input_dim=10, hidden_dim=hidden_dim, output_dim=2)
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
```
1.使用PyTorch实现LeNet网络 2.使用本地文件夹的 Fashion MNIST 对LeNet进行训练和测试,优化算法采用SGD或Adam,torch.optim.SGD 或 torch.optim.Adam 3.分别绘制训练和测试的损失函数曲线和分类正确率曲线 4.调节BatchSize、学习率,并依据测试损失曲线的拐点确定最佳模型,保存该模型 5.使用测试集测试所保存模型的性能,以混淆矩阵展示
好的,我来给你讲解一下使用PyTorch实现LeNet网络的具体步骤:
1.导入所需要的库
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
```
2.定义LeNet网络
```python
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.pool2 = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(16 * 4 * 4, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool1(torch.relu(self.conv1(x)))
x = self.pool2(torch.relu(self.conv2(x)))
x = x.view(-1, 16 * 4 * 4)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
```
3.加载数据集
```python
batch_size = 64
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])
trainset = torchvision.datasets.FashionMNIST(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=2)
testset = torchvision.datasets.FashionMNIST(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=2)
```
4.定义优化器和损失函数
```python
net = LeNet()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
```
5.训练模型并绘制损失函数曲线和分类正确率曲线
```python
epochs = 10
train_losses = []
train_accs = []
test_losses = []
test_accs = []
for epoch in range(epochs):
running_loss = 0.0
running_acc = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
running_acc += (predicted == labels).sum().item()
train_loss = running_loss / len(trainloader.dataset)
train_acc = running_acc / len(trainloader.dataset)
train_losses.append(train_loss)
train_accs.append(train_acc)
test_loss = 0.0
test_acc = 0.0
with torch.no_grad():
for data in testloader:
inputs, labels = data
outputs = net(inputs)
loss = criterion(outputs, labels)
test_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
test_acc += (predicted == labels).sum().item()
test_loss /= len(testloader.dataset)
test_acc /= len(testloader.dataset)
test_losses.append(test_loss)
test_accs.append(test_acc)
print('Epoch [%d/%d], Train Loss: %.4f, Train Accuracy: %.4f, Test Loss: %.4f, Test Accuracy: %.4f'
% (epoch + 1, epochs, train_loss, train_acc, test_loss, test_acc))
plt.plot(train_losses, label='Training Loss')
plt.plot(test_losses, label='Testing Loss')
plt.legend()
plt.show()
plt.plot(train_accs, label='Training Accuracy')
plt.plot(test_accs, label='Testing Accuracy')
plt.legend()
plt.show()
```
6.保存最佳模型
```python
best_test_loss = min(test_losses)
best_epoch = test_losses.index(best_test_loss)
print('Best Epoch: %d, Best Test Loss: %.4f' % (best_epoch + 1, best_test_loss))
torch.save(net.state_dict(), 'best_model.pth')
```
7.使用混淆矩阵展示模型性能
```python
confusion_matrix = torch.zeros(10, 10)
with torch.no_grad():
for data in testloader:
inputs, labels = data
outputs = net(inputs)
_, predicted = torch.max(outputs, 1)
for i in range(len(labels)):
confusion_matrix[labels[i]][predicted[i]] += 1
classes = ('T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot')
plt.figure(figsize=(10, 10))
plt.imshow(confusion_matrix, interpolation='nearest', cmap=plt.cm.Blues)
plt.title('Confusion Matrix')
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
plt.xlabel('Predicted label')
plt.ylabel('True label')
plt.show()
```
通过以上步骤,我们就可以完成使用PyTorch实现LeNet网络的训练和测试,并且得到最佳模型,最后使用混淆矩阵展示模型性能。
阅读全文