pytorch保存模型可以保存学习率和batchsize等超参数么
时间: 2024-10-08 13:18:35 浏览: 29
PyTorch 中保存模型通常只保存模型的权重(参数)以及训练状态,如优化器的状态(optimizer.state_dict),它们包含了训练过程的一些信息,比如当前的学习率(learning rate)。学习率和 batch size 等超参数本身并不是模型的一部分,而是配置的一部分,通常会存储在外部脚本或者日志文件中,而不是直接保存到模型文件中。
当你需要记录超参数时,可以在训练完成后将它们一起保存在一个配置文件或字典中,便于后续加载和复现实验。例如,你可以使用 Python 的 JSON 或者 YAML 库来保存这些信息:
```python
import torch
import json
# 超参数
hyperparams = {
'learning_rate': learning_rate,
'batch_size': batch_size
}
# 存储到文件
with open('hyperparameters.json', 'w') as f:
json.dump(hyperparams, f)
# 当需要加载时
with open('hyperparameters.json', 'r') as f:
loaded_hyperparams = json.load(f)
```
相关问题
编写pytorch代码,定义LSTMAttention模型,在参数空间定义学习率、batch_size、权重衰减、神经元个数、dropout、自注意力等超参数,定义一个CPSO优化算法,定义一个适应度函数fitness_function,用于评估LSTMAttention模型在给定超参数下的性能,用CPSO算法优化模型中超参数,找到最优的超参数组合,并将最优的超参数传递给模型
好的,我来解答这个问题。首先,我们需要定义LSTMAttention模型,代码如下:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class LSTMAttention(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(LSTMAttention, self).__init__()
self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True)
self.attention_fc = nn.Linear(hidden_dim, 1)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
out, (h_n, c_n) = self.lstm(x)
attention_weights = F.softmax(self.attention_fc(out), dim=1)
context_vector = torch.sum(attention_weights * out, dim=1)
output = self.fc(context_vector)
return output
```
接下来,我们需要定义模型的超参数空间和优化算法。这里我们使用CPSO算法来优化模型的超参数,代码如下:
```python
import random
class CPSO:
def __init__(self, num_particles, dim, max_iter, lr):
self.num_particles = num_particles
self.dim = dim
self.max_iter = max_iter
self.lr = lr
self.particles = [[random.uniform(0, 1) for _ in range(dim)] for _ in range(num_particles)]
self.velocities = [[0 for _ in range(dim)] for _ in range(num_particles)]
self.pbest_positions = self.particles.copy()
self.pbest_fitnesses = [float('inf') for _ in range(num_particles)]
self.gbest_position = [0 for _ in range(dim)]
self.gbest_fitness = float('inf')
def update_position(self, x, v):
return [xi + vi for xi, vi in zip(x, v)]
def update_velocity(self, x, v, pbest, gbest):
w = 0.7
c1 = 1.4
c2 = 1.4
r1 = random.uniform(0, 1)
r2 = random.uniform(0, 1)
v_new = [w * vi + c1 * r1 * (pbest[i] - xi) + c2 * r2 * (gbest[i] - xi) for i, xi, vi in zip(range(self.dim), x, v)]
return v_new
def evaluate_fitness(self, fitness_function):
fitnesses = []
for particle in self.particles:
fitness = fitness_function(particle)
fitnesses.append(fitness)
if fitness < self.pbest_fitnesses[self.particles.index(particle)]:
self.pbest_fitnesses[self.particles.index(particle)] = fitness
self.pbest_positions[self.particles.index(particle)] = particle
if fitness < self.gbest_fitness:
self.gbest_fitness = fitness
self.gbest_position = particle
return fitnesses
def optimize(self, fitness_function):
for i in range(self.max_iter):
fitnesses = self.evaluate_fitness(fitness_function)
for particle, velocity in zip(self.particles, self.velocities):
velocity = self.update_velocity(particle, velocity, self.pbest_positions[self.particles.index(particle)], self.gbest_position)
particle = self.update_position(particle, velocity)
self.velocities = [self.update_velocity(particle, velocity, self.pbest_positions[self.particles.index(particle)], self.gbest_position) for particle, velocity in zip(self.particles, self.velocities)]
self.particles = [self.update_position(particle, velocity) for particle, velocity in zip(self.particles, self.velocities)]
return self.gbest_position
```
接下来,我们需要定义适应度函数fitness_function,用于评估LSTMAttention模型在给定超参数下的性能。这里我们使用交叉熵损失函数和Adam优化算法来训练模型,代码如下:
```python
import torch.optim as optim
import torch.utils.data as data
def fitness_function(hyperparameters):
# set hyperparameters
learning_rate = hyperparameters[0]
batch_size = int(hyperparameters[1] * 128)
weight_decay = hyperparameters[2]
hidden_dim = int(hyperparameters[3] * 256)
dropout = hyperparameters[4]
num_heads = int(hyperparameters[5] * 8)
# define model
model = LSTMAttention(input_dim=10, hidden_dim=hidden_dim, output_dim=2)
# define optimizer and loss function
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
criterion = nn.CrossEntropyLoss()
# train model
for epoch in range(10):
for i, (x, y) in enumerate(train_loader):
optimizer.zero_grad()
output = model(x)
loss = criterion(output, y)
loss.backward()
optimizer.step()
# evaluate model
correct = 0
total = 0
with torch.no_grad():
for x, y in test_loader:
output = model(x)
_, predicted = torch.max(output.data, 1)
total += y.size(0)
correct += (predicted == y).sum().item()
accuracy = correct / total
return accuracy
```
最后,我们可以使用CPSO算法来优化模型的超参数,找到最优的超参数组合,并将最优的超参数传递给模型,代码如下:
```python
# define train and test data loaders
train_loader = data.DataLoader(train_data, batch_size=128, shuffle=True)
test_loader = data.DataLoader(test_data, batch_size=128, shuffle=True)
# define hyperparameters space and CPSO optimizer
hyperparameters_space = [(1e-5, 1e-1), (0.1, 1), (1e-5, 1e-1), (0.1, 1), (0, 0.5), (0.1, 1)]
num_particles = 20
dim = len(hyperparameters_space)
max_iter = 50
lr = 0.1
cpso = CPSO(num_particles, dim, max_iter, lr)
# optimize hyperparameters using CPSO algorithm
best_hyperparameters = cpso.optimize(fitness_function)
# set best hyperparameters to model
learning_rate = best_hyperparameters[0]
batch_size = int(best_hyperparameters[1] * 128)
weight_decay = best_hyperparameters[2]
hidden_dim = int(best_hyperparameters[3] * 256)
dropout = best_hyperparameters[4]
num_heads = int(best_hyperparameters[5] * 8)
model = LSTMAttention(input_dim=10, hidden_dim=hidden_dim, output_dim=2)
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
```
1.使用PyTorch实现LeNet网络 2.使用实验7的 Fashion MNIST 对LeNet进行训练和测试,优化算法采用SGD或Adam,torch.optim.SGD 或 torch.optim.Adam 3.分别绘制训练和测试的损失函数曲线和分类正确率曲线 4.调节BatchSize、学习率,并依据测试损失曲线的拐点确定最佳模型,保存该模型 5.使用测试集测试所保存模型的性能,以混淆矩阵展示
好的,这是一个深度学习的任务,需要使用PyTorch实现LeNet网络并对Fashion MNIST数据集进行训练和测试,我来帮您一步一步完成这个任务。
首先,我们需要导入必要的包:torch、torchvision、numpy和matplotlib。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import numpy as np
import matplotlib.pyplot as plt
```
接下来,我们定义LeNet网络的结构。
```python
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.pool2 = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(16 * 4 * 4, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool1(torch.relu(self.conv1(x)))
x = self.pool2(torch.relu(self.conv2(x)))
x = x.view(-1, 16 * 4 * 4)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
```
这里我们定义了一个包含2个卷积层和3个全连接层的LeNet网络,其中第一个卷积层有6个5x5的卷积核,第二个卷积层有16个5x5的卷积核。每个卷积层后面都跟了一个2x2的最大池化层,然后是3个全连接层,分别有120、84和10个神经元。
接下来,我们加载Fashion MNIST数据集,并将其划分为训练集和验证集。
```python
transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = torchvision.datasets.FashionMNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
val_dataset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=64, shuffle=False)
```
这里我们使用了PyTorch内置的Fashion MNIST数据集,并使用了一个Compose对象将ToTensor和Normalize变换组合起来。我们将训练集和验证集分别放入DataLoader中,batch_size设置为64,shuffle设置为True和False,表示训练集需要打乱,而验证集不需要。
接下来,我们定义优化算法和损失函数。
```python
net = LeNet()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01)
```
这里我们使用了SGD优化算法和交叉熵损失函数,学习率设置为0.01。
接下来,我们开始训练模型。
```python
train_losses = []
train_accs = []
val_losses = []
val_accs = []
for epoch in range(10):
train_loss = 0.0
train_acc = 0.0
val_loss = 0.0
val_acc = 0.0
net.train()
for i, (inputs, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
train_acc += (predicted == labels).sum().item()
net.eval()
with torch.no_grad():
for inputs, labels in val_loader:
outputs = net(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
val_acc += (predicted == labels).sum().item()
train_loss /= len(train_loader)
train_acc /= len(train_dataset)
val_loss /= len(val_loader)
val_acc /= len(val_dataset)
train_losses.append(train_loss)
train_accs.append(train_acc)
val_losses.append(val_loss)
val_accs.append(val_acc)
print('Epoch %d: train_loss=%.4f train_acc=%.4f val_loss=%.4f val_acc=%.4f' % (
epoch+1, train_loss, train_acc, val_loss, val_acc))
```
这里我们训练了10个epoch,每个epoch分别对训练集进行一次迭代,同时在验证集上计算loss和accuracy。在每个epoch结束时,我们将训练集和验证集的loss和accuracy记录下来。
最后,我们绘制训练和验证的损失函数曲线和分类正确率曲线。
```python
fig, ax = plt.subplots(1, 2, figsize=(12, 6))
ax[0].plot(train_losses, label='train')
ax[0].plot(val_losses, label='val')
ax[0].set_xlabel('epoch')
ax[0].set_ylabel('loss')
ax[0].set_title('Training and validation loss')
ax[0].legend()
ax[1].plot(train_accs, label='train')
ax[1].plot(val_accs, label='val')
ax[1].set_xlabel('epoch')
ax[1].set_ylabel('accuracy')
ax[1].set_title('Training and validation accuracy')
ax[1].legend()
plt.show()
```
这里我们使用了matplotlib库来绘制图形,包括训练和验证的损失函数曲线和分类正确率曲线。
接下来,我们调节BatchSize和学习率,并依据测试损失曲线的拐点确定最佳模型,并保存该模型。
```python
train_losses = []
train_accs = []
val_losses = []
val_accs = []
best_val_loss = float('inf')
best_model = None
batch_sizes = [16, 32, 64, 128, 256]
learning_rates = [0.001, 0.01, 0.1, 1]
for batch_size in batch_sizes:
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
for learning_rate in learning_rates:
net = LeNet()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
for epoch in range(10):
train_loss = 0.0
train_acc = 0.0
val_loss = 0.0
val_acc = 0.0
net.train()
for i, (inputs, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
train_acc += (predicted == labels).sum().item()
net.eval()
with torch.no_grad():
for inputs, labels in val_loader:
outputs = net(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
val_acc += (predicted == labels).sum().item()
train_loss /= len(train_loader)
train_acc /= len(train_dataset)
val_loss /= len(val_loader)
val_acc /= len(val_dataset)
train_losses.append(train_loss)
train_accs.append(train_acc)
val_losses.append(val_loss)
val_accs.append(val_acc)
if val_loss < best_val_loss:
best_val_loss = val_loss
best_model = net.state_dict()
print('BatchSize=%d LearningRate=%.3f Epoch %d: train_loss=%.4f train_acc=%.4f val_loss=%.4f val_acc=%.4f' % (
batch_size, learning_rate, epoch+1, train_loss, train_acc, val_loss, val_acc))
print('Best validation loss:', best_val_loss)
torch.save(best_model, 'best_model.pth')
```
这里我们使用了两个for循环,分别对BatchSize和学习率进行调节,并在每个epoch结束时记录train_loss、train_acc、val_loss和val_acc。在每次更新最佳模型时,我们将模型的参数保存下来。
最后,我们使用测试集测试所保存模型的性能,并以混淆矩阵展示。
```python
test_dataset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
net = LeNet()
net.load_state_dict(torch.load('best_model.pth'))
net.eval()
with torch.no_grad():
all_predicted = []
all_labels = []
for inputs, labels in test_loader:
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
all_predicted.extend(predicted.numpy())
all_labels.extend(labels.numpy())
all_predicted = np.array(all_predicted)
all_labels = np.array(all_labels)
confusion_matrix = np.zeros((10, 10))
for i in range(len(all_predicted)):
confusion_matrix[all_labels[i], all_predicted[i]] += 1
print(confusion_matrix)
```
这里我们加载保存的最佳模型,并使用测试集进行测试。使用numpy库创建混淆矩阵,将模型预测结果与真实标签进行比对,并将结果输出。
阅读全文