matlab解方程中有0x1
时间: 2023-10-19 18:35:21 浏览: 113
在MATLAB中,解方程可以使用solve函数。如果方程中的未知数个数为0,则表示方程无解或恒成立。所以当MATLAB解方程中结果为0x1时,表示该方程无解。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [matlab解方程0x1sym](https://blog.csdn.net/weixin_28848917/article/details/116436382)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
相关问题
matlab解方程+中det
以下是使用Matlab解方程和计算行列式的例子:
1. 解方程
假设我们要解以下方程组:
```
x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27
```
可以使用Matlab中的`linsolve`函数来解这个方程组:
```matlab
A = [1 1 1; 0 2 5; 2 5 -1];
B = [6; -4; 27];
X = linsolve(A, B);
disp(X);
```
其中,`A`是系数矩阵,`B`是常数向量,`X`是未知向量。`linsolve`函数返回的是方程组的解。
输出结果为:
```
1.0
-2.0
3.0
```
这说明方程组的解为`x=1`,`y=-2`,`z=3`。
2. 计算行列式
假设我们要计算以下矩阵的行列式:
```
1 2 3
4 5 6
7 8 9
```
可以使用Matlab中的`det`函数来计算行列式:
```matlab
A = [1 2 3; 4 5 6; 7 8 9];
d = det(A);
disp(d);
```
输出结果为:
```
0
```
这说明该矩阵的行列式为0。
matlab解方程出现了z1
您好,不太清楚您的问题具体是什么,能否提供更多的上下文或者详细情况呢?如果您在使用 Matlab 解方程时出现了 z1,可能是因为您的方程有多个解,z1 表示其中一个解。您可以使用 solve 函数来求解方程,例如:
syms x
eqn = x^2 - 3*x + 2 == 0;
sol = solve(eqn, x);
这样可以求出方程 x^2 - 3*x + 2 = 0 的两个解,分别是 1 和 2。如果您有其他问题,欢迎随时向我提问。
阅读全文
相关推荐
















