IS_ALIGNED

时间: 2024-03-31 15:30:41 浏览: 15
IS_ALIGNED是一个宏定义,用于检查给定的内存地址是否按照特定的对齐要求进行对齐。在C++11标准中,IS_ALIGNED宏定义被引入到<type_traits>头文件中。 IS_ALIGNED宏定义的语法如下: ```cpp template <typename T, std::size_t Alignment> struct is_aligned : std::integral_constant<bool, (reinterpret_cast<std::uintptr_t>(&static_cast<T*>(nullptr)[1]) % Alignment == 0)> {}; ``` 其中,T是要检查对齐性的类型,Alignment是对齐要求。 IS_ALIGNED宏定义使用了模板元编程的技术,通过计算给定类型T的指针地址与对齐要求Alignment的余数是否为0来判断是否满足对齐要求。如果满足对齐要求,则is_aligned<T, Alignment>::value为true,否则为false。 使用IS_ALIGNED宏定义可以在编译时进行对齐性检查,可以用于编写更加健壮和高效的代码。
相关问题

详解aligned_alloc

`aligned_alloc` 是 C11 标准引入的一种动态内存分配函数,它可以用于分配指定对齐方式的内存空间。其函数原型如下: ```c void *aligned_alloc(size_t alignment, size_t size); ``` 其中,`alignment` 表示所需内存空间的对齐方式,必须是 2 的整数次幂,而 `size` 则表示所需内存空间的大小。如果分配成功,`aligned_alloc` 返回指向对齐后的内存空间的指针,否则返回 `NULL`。 使用 `aligned_alloc` 分配的内存空间,可以用于存储需要特定对齐方式的数据类型,比如 SIMD 指令集中的数据类型。其使用方法与 `malloc` 类似,但需要注意以下几点: - `alignment` 必须是 2 的整数次幂; - 返回的指针地址必须是 `alignment` 的整数倍; - 分配的内存空间需要使用 `free` 函数进行释放。 示例代码如下: ```c #include <stdlib.h> #include <stdio.h> int main() { size_t alignment = 32; size_t size = 1024; void *ptr = aligned_alloc(alignment, size); if (ptr == NULL) { perror("aligned_alloc"); return EXIT_FAILURE; } printf("ptr: %p\n", ptr); printf("address is %saligned\n", ((uintptr_t)ptr % alignment == 0) ? "" : "not "); free(ptr); return EXIT_SUCCESS; } ``` 以上代码分配了一个大小为 1024 字节,对齐方式为 32 字节的内存空间,并输出了分配得到的指针地址以及对齐情况。需要注意的是,输出的地址应该是 32 的整数倍,即对齐成功。

请观察如下伪代码,补全计算vdec+resize串联使用时,resize输入数据内存大小的计算公式(请填写变量名): uint32_t inputWidth = 1080; uint32_t inputHeight = 720; uint32_t sizeAlignment = 3; uint32_t sizeNum = 2; uint3_t aligned_w = 16; uint3_t aligned_h = 2; //the input yuv is from VDEC, it shoud be aligned to 16*2 uint32_t inputWidthStride = (inputWidth + aligned_w - 1) / aligned_w * aligned_w; uint32_t inputHeightStride = (inputHeight + aligned_h - 1) / aligned_h * aligned_h; uint32_t inputBufferSize = inputWidthStride * inputHeightStride * ()/();

根据伪代码,计算vdec+resize串联使用时,resize输入数据内存大小的计算公式如下: ``` uint32_t inputWidth = 1080; uint32_t inputHeight = 720; uint32_t sizeAlignment = 3; uint32_t sizeNum = 2; uint3_t aligned_w = 16; uint3_t aligned_h = 2; // the input yuv is from VDEC, it should be aligned to 16*2 uint32_t inputWidthStride = (inputWidth + aligned_w - 1) / aligned_w * aligned_w; uint32_t inputHeightStride = (inputHeight + aligned_h - 1) / aligned_h * aligned_h; uint32_t inputBufferSize = inputWidthStride * inputHeightStride * sizeNum / sizeAlignment; // 填写计算公式 ``` 其中,inputWidth和inputHeight为输入图像的宽高,aligned_w和aligned_h为对齐宽高,sizeNum表示需要存储的图像数目,sizeAlignment表示对齐系数。inputWidthStride和inputHeightStride为宽度和高度的对齐值。输入数据内存大小的计算公式为:inputWidthStride * inputHeightStride * sizeNum / sizeAlignment。

相关推荐

void Trajectory::predict_box( uint idx_duration, std::vector<Box>& vec_box, std::vector<Eigen::MatrixXf, Eigen::aligned_allocatorEigen::MatrixXf>& vec_cova, bool& is_replay_frame) { vec_box.clear(); vec_cova.clear(); if (is_replay_frame) { for (auto iter = map_current_box_.begin(); iter != map_current_box_.end(); ++iter) { Destroy(iter->second.track_id()); } m_track_start_.Clear_All(); NU = 0; is_replay_frame = false; } Eigen::MatrixXf F_temp = F_; F_temp(0, 1) = idx_duration * F_(0, 1); F_temp(2, 3) = idx_duration * F_(2, 3); F_temp(4, 5) = idx_duration * F_(4, 5); uint64_t track_id; Eigen::Matrix<float, 6, 1> state_lidar; Eigen::Matrix<float, 6, 6> P_kkminus1; Eigen::Matrix3f S_temp; for (auto beg = map_current_box_.begin(); beg != map_current_box_.end(); ++beg) { float t = (fabs(0.1 - beg->second.frame_duration()) > 0.05) ? 0.1 : 0.2 - beg->second.frame_duration(); F_temp(0, 1) = t; F_temp(2, 3) = t; F_temp(4, 5) = t; // uint64_t timestamp_new = beg->second.timestamp() + uint(10.0 * t * NANO_FRAME); track_id = beg->first; state_lidar = F_temp * map_lidar_state_.at(track_id); P_kkminus1 = F_temp * map_lidar_cova_.at(track_id) * F_temp.transpose() + Q_lidar_; S_temp = H_ * P_kkminus1 * H_.transpose() + R_lidar_; float psi_new = (1 - P_D_ * P_G_) * beg->second.psi() / (1 - P_D_ * P_G_ * beg->second.psi()); Box bbox = beg->second; bbox.set_psi(psi_new); // bbox.set_timestamp(timestamp_new); bbox.set_position_x(state_lidar(0)); bbox.set_position_y(state_lidar(2)); bbox.set_position_z(state_lidar(4)); bbox.set_speed_x(state_lidar(1)); bbox.set_speed_y(state_lidar(3)); bbox.set_speed_z(state_lidar(5)); vec_box.emplace_back(bbox); vec_cova.emplace_back(S_temp); } AINFO << "Finish predict with duration frame num: " << idx_duration; } 代码解读

分析一下这段代码:#include "stdio.h" #include<xmmintrin.h> //Need this for SSE compiler intrinsics #include<math.h> //Needed for sqrt in CPU-only version #include<time.h> int main(int argc,char *argv[]) { printf("Starting calculation...\n"); const int length=64000; //We will be calculating Y=SQRT(x)/x, for x=1->64000 //If you do not properly align your data for SSE instructions, you may take a huge performance hit. float *pResult=(float *)_aligned_malloc(length*sizeof(float),16); //align to 16-byte for SSE __m128 x; __m128 xDelta=_mm_set1_ps(4.0f); //Set the xDelta to (4,4,4,4) __m128 *pResultSSE=(__m128 *)pResult; const int SSELength=length/4; clock_t clock1=clock(); #define TIME_SSE //Define this if you want to run with SSE #ifdef TIME_SSE //lots of stress loops so we can easily use a stopwatch for(int stress=0;stress<1000;stress++) { //Set the initial values of x to (4,3,2,1) x=_mm_set_ps(4.0f,3.0f,2.0f,1.0f); for(int i=0; i<SSELength; i++) { __m128 xSqrt=_mm_sqrt_ps(x); //Note! Division is slow. It's actually faster to take the reciprocal of a number and multiply //Also note that Division is more accurate than taking the reciprocal and multiplying #define USE_DIVISION_METHOD #ifdef USE_FAST_METHOD _m128 xRecip=_mm_rcp_ps(x); pResultSSE[i]=_mm_mul_ps(xRecip,xSqrt); #endif //USE_FAST_METHOD #ifdef USE_DIVISION_METHOD pResultSSE[i]=_mm_div_ps(xSqrt,x); #endif //USE_DIVISION_METHOD //Advance x to the next set of numbers x=_mm_add_ps(x,xDelta); } } clock_t clock2=clock(); printf("SIMDtime:%d ms\n",1000*(clock2-clock1)/CLOCKS_PER_SEC); #endif //TIME_SSE #define TIME_noSSE #ifdef TIME_noSSE clock_t clock3=clock(); //lots of stress loops so we can easily use a stopwatch for(int stress=0;stress<1000;stress++) { clock_t clock3=clock(); float xFloat=1.0f; for(int i=0;i<length;i++) { //Even though division is slow,there are no intrinsic functions like there are in SSE pResult[i]=sqrt(xFloat)/xFloat; xFloat+=1.0f; } } clock_t clock4=clock(); printf("noSIMDtime:%d ms\n",1000*(clock4-clock3)/CLOCKS_PER_SEC); #endif //TIME_noSSE return 0; }

请为下面的代码写备注,解释每一个参数的意思是什么: 00:00:00 [cmd:DATA,Q:M00101gAAP88E2QUio0A,tid:AQAAfwCXB13_PBNkz8aNAA--.62429S2,ip:192.168.166.17,ClientIp:192.168.166.17,FreeIP:0,FreeIPFlag:0,ssl:0,CmProtocol:0,SysWhitelist:0,origip:,xmailer:,Sender:,SenderEmail:,Local:0,FromDN:,org_id:,org_unit_id:@,HdrFrom:System),ClientPort:55576,ipsmtpspamoutcnt:0(-1) 0(-1),BlackUser:0,Rcpt:malp@smu.edu.cn;,RcptHandle:,lrcptcnt:1,rrcptcnt:0,LmtpRcpt:,LmtpRcptCnt:0,DataRuleID:0,DataRuleName:,DataPolicyID:1,Size:2602,Reputation:,BM:0,BMRespond:,Score:7.10,CntRuleID:0,CntRuleName:,PolicyID:0,AttachCnt:0,AttachFngCnt:0,BlackURL:0,GlobalSkipRBLIP:0,PassGlobalGrayList:0,ApiGrayIP:0,GrayList:0,PassGrayList:0,GrayListDelay:0,PassGrayListDelay:0,DataFngCnt:0,RcptFngCnt:0,DataSFngCnt:0,RcptSFngCnt:0,DataGifFngCnt:0,RcptGifFngCnt:0,GifShortLineCnt:0,DataJpgFngCnt:0,RcptJpgFngCnt:0,JpgSVMSpam:0,JpgSVMProb:0.00,STextSVMSpam:0,STextSVMProb:0.00,DkimVerifyResult:3,DkimSigResults:,SpamFng:0,HoneyPot:0,subject:Undelivered Mail Returned to Sender,SubjectCnt:2132,Handle:4,Respond:553 Requested action not taken\: NULL sender is not allowed\r\n,Result:Reject,DebugInfo:empty mailfrom is prohibited,DebugContext:,Delivered:0,Async:0,HdrDate:1678982401,Eval:BAYES_80;BM_PASS;CMD_CNT_00_10;CUR_CONN_00_01;DKIM_NEUTRAL;DMARC_NON_ALIGNED;DOMAIN_QUARTER_CNT_00_05;DOMAIN_QUARTER_RCPT_CNT_00_10;DOMAIN_TODAY_CNT_00_10;DOMAIN_TODAY_RCPT_CNT_00_10;FAKE_BOUNCE_MESSAGE;GET_ERROR_HEADER_FIELD;HTML_MIME_NO_HTML_TAG;IP_QUARTER_CNT_01_02;IP_TODAY_CNT_50_100;JPG_SVM_PROB_00_10;PTR_NO;REPUTATION_NULL;RUSER_QUARTER_CNT_00_05;RUSER_QUARTER_RCPT_CNT_00_10;RUSER_TODAY_CNT_00_10;RUSER_TODAY_RCPT_CNT_00_10;SPF_NONE;STEXT_SVM_PROB_00_10;SUBJECT_CNT_2000_3000;TEXT_HTML_CNT_00_01;TEXT_PLAIN_CNT_01_03;TO_CC_BCC_CNT_00_02;URLREP_NULL;USER_SEND_INTERVAL_00_05,Content:InqmfXjmfXjA-nxDTs0mTbjWhVFAasAD3V7D-nEWSbjA-sCvo9Gp3Z0danEl3svLoDAO17mYYZADfZEXfBkDSU==,optime:606,delaytime:0,errinfo:,ttime:1,tsize:2611]

给出下列代码在OpenCL中的运行结果:#include "stdio.h" #include <xmmintrin.h> // Need this for SSE compiler intrinsics #include <math.h> // Needed for sqrt in CPU-only version #include <time.h> int main(int argc, char* argv[]) { printf("Starting calculation...\n"); const int length = 64000; // We will be calculating Y = SQRT(x) / x, for x = 1->64000 // If you do not properly align your data for SSE instructions, you may take a huge performance hit. float *pResult = (float*) _aligned_malloc(length * sizeof(float), 16); // align to 16-byte for SSE __m128 x; __m128 xDelta = _mm_set1_ps(4.0f); // Set the xDelta to (4,4,4,4) __m128 *pResultSSE = (__m128*) pResult; const int SSELength = length / 4; clock_t clock1=clock(); #define TIME_SSE // Define this if you want to run with SSE #ifdef TIME_SSE // lots of stress loops so we can easily use a stopwatch for (int stress = 0; stress < 1000; stress++) { // Set the initial values of x to (4,3,2,1) x = _mm_set_ps(4.0f, 3.0f, 2.0f, 1.0f); for (int i=0; i < SSELength; i++) { __m128 xSqrt = _mm_sqrt_ps(x); // Note! Division is slow. It's actually faster to take the reciprocal of a number and multiply // Also note that Division is more accurate than taking the reciprocal and multiplying #define USE_DIVISION_METHOD #ifdef USE_FAST_METHOD __m128 xRecip = _mm_rcp_ps(x); pResultSSE[i] = _mm_mul_ps(xRecip, xSqrt); #endif //USE_FAST_METHOD #ifdef USE_DIVISION_METHOD pResultSSE[i] = _mm_div_ps(xSqrt, x); #endif // USE_DIVISION_METHOD // Advance x to the next set of numbers x = _mm_add_ps(x, xDelta); } } clock_t clock2=clock(); printf("SIMDtime:%d ms\n",1000*(clock2-clock1)/CLOCKS_PER_SEC); #endif // TIME_SSE #define TIME_NoSSE #ifdef TIME_NoSSE clock_t clock3=clock(); // lots of stress loops so we can easily use a stopwatch for (int stress = 0; stress < 1000; stress++) { clock_t clock3=clock(); float xFloat = 1.0f; for (int i=0 ; i < length; i++) { // Even though division is slow, there are no intrinsic functions like there are in SSE pResult[i] = sqrt(xFloat) / xFloat; xFloat += 1.0f; } } clock_t clock4=clock(); printf("noSIMDtime:%d ms\n",1000*(clock4-clock3)/CLOCKS_PER_SEC); #endif // TIME_noSSE return 0; }   

最新推荐

recommend-type

node-v18.11.0-headers.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

JavaScript_跨平台3D场景编辑器基于threejs golang和mongodb桌面和web.zip

JavaScript
recommend-type

JavaScript_如何编写跨平台Nodejs代码.zip

JavaScript
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这