def load_known_faces(dstImgPath, mtcnn, resnet): aligned = [] knownImg = cv2.imread(dstImgPath) # 读取图片 face = mtcnn(knownImg) # 使用mtcnn检测人脸,返回【人脸数组】 if face is not None: aligned.append(face[0]) aligned = torch.stack(aligned).to(device) with torch.no_grad(): known_faces_emb = resnet(aligned).detach().cpu() # 使用resnet模型获取人脸对应的特征向量 print("\n人脸对应的特征向量为:\n", known_faces_emb) return known_faces_emb, knownImg # 计算人脸特征向量间的欧氏距离,设置阈值,判断是否为同一个人脸 def match_faces(faces_emb, known_faces_emb, threshold): isExistDst = False distance = (known_faces_emb[0] - faces_emb[0]).norm().item() print("\n两张人脸的欧式距离为:%.2f" % distance) if (distance < threshold): isExistDst = True return isExistDst def main(): # help(MTCNN) # help(InceptionResnetV1) # 获取设备 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print(device) # mtcnn模型加载【设置网络参数,进行人脸检测】 mtcnn = MTCNN(min_face_size=12, thresholds=[0.2, 0.2, 0.3], keep_all=True, device=device) # InceptionResnetV1模型加载【用于获取人脸特征向量】 resnet = InceptionResnetV1(pretrained='vggface2').eval().to(device) MatchThreshold = 0.8 # 人脸特征向量匹配阈值设置

时间: 2024-02-29 19:54:48 浏览: 16
这段代码是一个人脸识别的Python程序。它首先使用MTCNN模型检测输入图像中的人脸,并将检测到的人脸对齐。然后,它使用InceptionResnetV1模型将对齐后的人脸图像转换为一个128维的特征向量。最后,它将这个特征向量与已知的人脸特征向量进行比较,如果它们之间的欧氏距离小于预先设定的阈值,则认为这两张人脸是同一个人。 具体来说,这段代码包含了两个函数:load_known_faces和match_faces。load_known_faces函数用于加载一个已知的人脸图像,并将其转换为一个特征向量。match_faces函数用于将一个输入的人脸图像与已知的人脸特征向量进行比较,判断它们是否属于同一个人。在这个函数中,如果输入人脸图像与已知人脸的欧氏距离小于预先设定的阈值,则认为它们是同一个人,返回True,否则返回False。 在main函数中,程序首先加载了MTCNN和InceptionResnetV1模型,并设置了人脸特征向量匹配的阈值。该程序可以用于人脸识别等应用。
相关问题

if __name__ == '__main__': # help(MTCNN) # help(InceptionResnetV1) # 获取设备 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print(device) # mtcnn模型加载【设置网络参数,进行人脸检测】 mtcnn = MTCNN(min_face_size=12, thresholds=[0.2, 0.2, 0.3], keep_all=True, device=device) # InceptionResnetV1模型加载【用于获取人脸特征向量】 resnet = InceptionResnetV1(pretrained='vggface2').eval().to(device) MatchThreshold = 0.8 # 人脸特征向量匹配阈值设置 known_faces_emb, _ = load_known_faces('401.jpg', mtcnn, resnet) # 已知人物图 # bFaceThin.png lyf2.jpg faces_emb, img = load_known_faces('402.jpg', mtcnn, resnet) # 待检测人物图 isExistDst = match_faces(faces_emb, known_faces_emb, MatchThreshold) # 人脸匹配 print("设置的人脸特征向量匹配阈值为:", MatchThreshold) if isExistDst: boxes, prob, landmarks = mtcnn.detect(img, landmarks=True) # 返回人脸框,概率,5个人脸关键点 print('由于欧氏距离小于匹配阈值,故匹配') else: print('由于欧氏距离大于匹配阈值,故不匹配')

这段代码是一个人脸识别的示例,具体流程如下: 1. 判断当前设备是否支持 CUDA,如果支持则使用 GPU 进行计算,否则使用 CPU。 2. 使用 MTCNN 模型进行人脸检测,获取人脸框、概率和关键点等信息。 3. 使用 InceptionResnetV1 模型获取人脸特征向量。 4. 加载已知人物图像和待检测人物图像,并分别获取其人脸特征向量。 5. 对比已知人物和待检测人物的人脸特征向量,如果欧氏距离小于设定的匹配阈值,则认为两者匹配,否则不匹配。 6. 如果匹配,则在待检测人物图像中绘制人脸框和关键点,输出匹配结果;否则输出不匹配结果。 其中,MTCNN 是一种用于多尺度人脸检测的卷积神经网络模型,InceptionResnetV1 是一种用于人脸识别的卷积神经网络模型。这段代码主要使用了这两个模型来实现人脸识别。

face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') def detect_faces(img, draw_box=True): # convert image to grayscale grayscale_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # detect faces faces = face_cascade.detectMultiScale(grayscale_img, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags=cv2.CASCADE_SCALE_IMAGE) face_box, face_coords = None, [] for (x, y, w, h) in faces: if draw_box: cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 5) face_box = img[y:y+h, x:x+w] face_coords = [x,y,w,h] return img, face_box, face_coords if __name__ == "__main__": files = os.listdir('sample_faces') images = [file for file in files if 'jpg' in file] for image in images: img = cv2.imread('sample_faces/' + image) detected_faces, _, _ = detect_faces(img) cv2.imwrite('sample_faces/detected_faces/' + image, detected_faces)做一个可视化界面,要求可以拖进去图片,并且显示处理后的图片

好的,你可以使用Python的Tkinter库来创建一个GUI界面。以下是一个简单的示例代码: ```python import cv2 import os import tkinter as tk from tkinter import filedialog face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') def detect_faces(img, draw_box=True): # convert image to grayscale grayscale_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # detect faces faces = face_cascade.detectMultiScale(grayscale_img, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags=cv2.CASCADE_SCALE_IMAGE) face_box, face_coords = None, [] for (x, y, w, h) in faces: if draw_box: cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 5) face_box = img[y:y+h, x:x+w] face_coords = [x,y,w,h] return img, face_box, face_coords def open_file(): file_path = filedialog.askopenfilename() if file_path: img = cv2.imread(file_path) detected_faces, _, _ = detect_faces(img) cv2.imshow('Detected Faces', detected_faces) cv2.waitKey(0) cv2.destroyAllWindows() root = tk.Tk() root.title('Face Detection') root.geometry('300x100') button = tk.Button(root, text='Open Image', command=open_file) button.pack(pady=20) root.mainloop() ``` 这个程序会创建一个窗口,并在窗口中添加一个“Open Image”按钮。当你点击按钮时,会弹出一个文件选择对话框,你可以选择要处理的图片。选择好图片后,程序会自动进行人脸检测,并在新窗口中显示处理后的图片。

相关推荐

最新推荐

recommend-type

华为OD机试D卷 - 用连续自然数之和来表达整数 - 免费看解析和代码.html

私信博主免费获取真题解析以及代码
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

未定义标识符CFileFind

CFileFind 是MFC(Microsoft Foundation Class)中的一个类,用于在Windows文件系统中搜索文件和目录。如果你在使用CFileFind时出现了“未定义标识符”的错误,可能是因为你没有包含MFC头文件或者没有链接MFC库。你可以检查一下你的代码中是否包含了以下头文件: ```cpp #include <afx.h> ``` 另外,如果你在使用Visual Studio开发,还需要在项目属性中将“使用MFC”设置为“使用MFC的共享DLL”。这样才能正确链接MFC库。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。