matlab实现focuss算法的稀疏阵列 全部代码
时间: 2024-12-18 13:15:59 浏览: 5
Focuss(Fast Orthogonal Matching Pursuit for Sparse Reconstruction)是一种快速的稀疏信号重构算法,它结合了匹配追踪(OMP)和快速傅立叶变换(FFT)。在MATLAB中实现Focuss算法用于处理稀疏数组,通常会包含以下几个步骤:
1. 导入必要的库函数:
```matlab
% 加载基础工具箱
addpath('toolbox'); % 如果有自定义的工具箱文件夹
```
2. 定义基本函数(如离散余弦变换、逆DCT等):
```matlab
function dct = dct2(x)
% 快速DCT II变换
end
function idct = idct2(dct)
% 快速IDCT II逆变换
end
```
3. 实现Focuss算法核心部分:
```matlab
function [sparseSolution, support] = focuss(sparseSignal, sensingMatrix, maxIterations, lambda)
n = length(sparseSignal);
m = size(sensingMatrix, 2);
% 初始化
support = zeros(1, maxIterations);
sparseSolution = zeros(n, 1);
currentSupportIndex = 1;
for iter = 1:maxIterations
% 此步可以采用傅立叶变换加速搜索过程
candidateIndices = find(abs(sensingMatrix(:, currentSupportIndex)) == max(abs(sensingMatrix(:, currentSupportIndex))));
if ~isempty(candidateIndices)
% 更新支持集和解决方案
[~, idx] = min(norm(sensingMatrix(:, candidateIndices) - sparseSignal, 'fro') + lambda * sum(abs(candidateIndices)));
support(iter) = candidateIndices(idx);
sparseSolution(support(iter)) = idct2(sensingMatrix(support(iter), :)' * sparseSignal);
else
break; % 找不到更多的非零元素,退出循环
end
currentSupportIndex = iter + 1;
end
end
```
4. 示例用法:
```matlab
% 生成随机稀疏信号和测量矩阵
sparseVector = randi([0 1], n, 1); % 随机n维稀疏向量
sensingMatrix = randn(m, n); % 测量矩阵,m远小于n
% 运行Focuss算法
[reconstructedSignal, support] = focuss(sparseVector, sensingMatrix, maxIterations, lambda);
% 检查结果
disp(['Reconstructed Signal: ', num2str(reconstructedSignal)]);
disp(['Support Indices: ', num2str(support)]);
阅读全文