基于hed的迁移学习

时间: 2024-05-25 13:07:24 浏览: 221
基于HED的迁移学习是一种利用HED(Holistically-Nested Edge Detection)算法进行图像边缘检测的方法,并将其应用于迁移学习任务中。HED是一种基于深度学习的边缘检测算法,通过将多个尺度的特征图进行融合,能够有效地提取图像中的边缘信息。 在基于HED的迁移学习中,首先使用大规模数据集(如ImageNet)对HED模型进行预训练,以学习通用的边缘检测能力。然后,将预训练好的HED模型应用于目标任务中,通过微调或特征提取的方式,将模型适应到目标任务的特定数据集上。 通过基于HED的迁移学习,可以充分利用预训练模型在大规模数据集上学到的边缘检测能力,从而加快目标任务的训练过程,并提升模型在目标任务上的性能。
相关问题

HED深度学习的算法

HED (Hierarchical Encoder-Decoder) 是一种基于深度学习的目标检测和图像分割算法。它结合了卷积神经网络 (CNN) 的编码部分和解码部分的优势。HED的主要特点是采用了层次结构设计,分为两个阶段: 1. **上下文感知编码**:通过一个深层次的卷积网络(通常是预训练的VGG、ResNet等),提取高分辨率的特征图,捕捉全局上下文信息。 2. **细节导向解码**:在编码后的特征图上,应用一个自注意力机制的解码器,逐层细化目标区域的边界预测,同时保留高分辨率特征,有助于提高边缘检测的精度。 该算法的特点在于,它可以同时处理大尺度和小尺度的目标,并生成高质量的边框。HED最初在PAMI期刊上发表,因其在MS COCO边缘检测挑战赛中的优秀性能而知名。

HED训练自己的数据集

HED是一种边缘检测算法,可以用于训练自己的数据集。要训练HED模型,你需要准备训练图片和相应的标签图片。训练图片是包含边缘的图像,而标签图片是与训练图片相对应的二进制边缘图像。你可以使用train.txt文件来建立训练图片和标签图片的对应关系。 在训练之前,你需要下载vgg16的初始化权重文件,这是因为HED模型的网络结构中使用了vgg16的部分权重。你还可以根据需要调整训练参数,例如学习率和批量大小。 接下来,你可以使用PyTorch来实现HED的训练过程。你可以使用PyTorch提供的图像处理和优化函数来加载数据集、定义网络结构、计算损失和更新权重。通过迭代训练,你可以逐步优化模型,使其对边缘进行准确的检测。 训练完成后,你可以使用训练好的模型来预测新的图像边缘。你可以将测试图片作为输入,通过模型得到边缘检测结果。

相关推荐

帮我检查一下这段代码 clc clear fname='G:\CMIP6 data\map_hed\ACCESS-CM2\ssp126.xlsx'; [data]=xlsread(fname); lat = ncread('G:\CMIP6 data\CMIP6_china\Precipitation\ACCESS-CM2 (Australia)\pr_day_ACCESS-CM2_ssp126_r1i1p1f1_gn_20150101-21001231_v20191108.nc','lat'); lon = ncread('G:\CMIP6 data\CMIP6_china\Precipitation\ACCESS-CM2 (Australia)\pr_day_ACCESS-CM2_ssp126_r1i1p1f1_gn_20150101-21001231_v20191108.nc','lon'); %% filename4=('E:\XB\xibei\NewFolder\xeibei84.shp');%E:\XB\xibei\xb_wang Shape=shaperead(filename4); Sx=Shape.X;Sy=Shape.Y; data1=data'; for g=1:length(lat) x=lat(g); for h=1:length(lon) y=lon(h); U=inpolygon(x,y,Sy,Sx); if U==0 data1(g,h,:)=nan; end end end %% % filename=shaperead('E:\XB\xibei\NewFolder\xb_line.shp'); % geoshow(filename) m_proj('miller','longitudes',[72 112], 'latitudes',[33 51]); u=m_pcolor(lon,lat,data1); colormap('autumn'); caxis([5,30]);%pr 3*4=12 m_grid('FontSize',10,'Fontname','Times New Roman'); % m_grid('FontSize',10,'Fontname','Times New Roman','xticklable',[]); handles=findobj(gca,'tag','m_grid_yticklabel'); delete(handles(1:2:end)); handles=findobj(gca,'tag','m_grid_xticklabel'); delete(handles(1:2:end)); % m_grid('linestyle','none'); set(u,'edgecolor','none');%? colorbar map=shaperead('E:\XB\xibei\NewFolder\xb_line.shp');%加载省界带南海的边界线 xb_x=[map(:).X];%提取经度 xb_y=[map(:).Y];%提取纬度 provence=[xb_x',xb_y']; plot(xb_x,xb_y,'-k','LineWidth',1.2);%绘国界 axis([72 112 33 51]);%设置显示的经纬度范围 hold off

帮我看一下这段代码有什么问题 clear all; fname='G:\CMIP6 data\map_hed\ACCESS-CM2\ssp126.xlsx'; [data]=xlsread(fname); lat = ncread('G:\CMIP6 data\CMIP6_china\Precipitation\ACCESS-CM2 (Australia)\pr_day_ACCESS-CM2_ssp126_r1i1p1f1_gn_20150101-21001231_v20191108.nc','lat'); lon = ncread('G:\CMIP6 data\CMIP6_china\Precipitation\ACCESS-CM2 (Australia)\pr_day_ACCESS-CM2_ssp126_r1i1p1f1_gn_20150101-21001231_v20191108.nc','lon'); % [x,y]=meshgrid(lon,lat); filename4=('E:\XB\xibei\NewFolder\xeibei84.shp'); Shape=shaperead(filename4); Sx=Shape.X;Sy=Shape.Y; R=m_shaperead('E:\XB\xibei\xb_wang');clf; close all a=find(lon>=70 & lon<=140); b=find(lat>=20 & lat<=60); lon_num=length(a);lat_num=length(b); lonn=lon(a,:);latt=lat(b,:); % D=num2cell(data); for i=1 for g=1:length(lon); x=lon(g); for h=1:length(lat); y=lat(h); U=inpolygon(x,y,Sy,Sx); if U==0 data(g,h,:)=nan; end end end end set(gcf,'Position',[0.1 0.1 1500 1000]); [X,Y]=meshgrid(lonn,latt);hold on; m_proj('miller','lon',[70 110],'lat',[30 50]); uu=m_pcolor(X,Y,data'); shading interp; set(uu,'edgecolor','none') % m_grid('linewi',2,'linest','none','xtick',[70:5:115],'ytick',[30:5:50],'fontsize',22,'linewidth',2); % WBGYR % colorbar % h=colorbar('eastoutside'); colormap('autumn'); colorbar; % set(h,'ticks',[-0.1:0.05:0.3],'linewidth',2,'fontsize',22); % caxis([-0.1 0.3]); for v=1:length(R.ncst) m_line(R.ncst{v}(:,1),R.ncst{v}(:,2),'Color','k','Linewidth',0.5); end hold on; % title(' ','fontsize',25); % saveas(figure(1),'spatial.tif') % close all %

最新推荐

recommend-type

opencv3/C++图像边缘提取方式

OpenCV 图像边缘提取方式 OpenCV 是一个计算机视觉库,提供了许多图像处理算法,今天我们将讨论 OpenCV 3 中的图像边缘提取方式。 图像边缘提取 图像边缘提取是图像处理技术中的一种重要技术,它可以从图像中提取...
recommend-type

基于opencv实现象棋识别及棋谱定位python源码+数据集-人工智能课程设计

基于opencv实现象棋识别及棋谱定位python源码+数据集-人工智能课程设计,含有代码注释,满分课程设计资源,新手也可看懂,期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。该项目可以作为课程设计期末大作业使用,该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 基于opencv实现象棋识别及棋谱定位python源码+数据集-人工智能课程设计,含有代码注释,满分课程设计资源,新手也可看懂,期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。该项目可以作为课程设计期末大作业使用,该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 基于opencv实现象棋识别及棋谱定位python源码+数据集-人工智能课程设计,含有代码注释,满分课程设计资源,新手也可看懂,期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。该项目可以作为课程设计期末大作业使用,该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。基于opencv实现象棋识别及棋谱定位python源码+数据集
recommend-type

基于Python实现的Cowrie蜜罐设计源码

该项目为基于Python实现的Cowrie蜜罐设计源码,共计380个文件,涵盖166个Python源代码文件,以及包括RST、SQL、YAML、Markdown等多种类型的配置和文档文件。Cowrie蜜罐是一款用于记录暴力攻击和攻击者执行的SSH及Telnet交互的中等交互式蜜罐。
recommend-type

QT 摄像头获取每一帧图像数据以及opencv获取清晰度

QT 摄像头获取每一帧图像数据以及opencv获取清晰度
recommend-type

IPQ4019 QSDK开源代码资源包发布

资源摘要信息:"IPQ4019是高通公司针对网络设备推出的一款高性能处理器,它是为需要处理大量网络流量的网络设备设计的,例如无线路由器和网络存储设备。IPQ4019搭载了强大的四核ARM架构处理器,并且集成了一系列网络加速器和硬件加密引擎,确保网络通信的速度和安全性。由于其高性能的硬件配置,IPQ4019经常用于制造高性能的无线路由器和企业级网络设备。 QSDK(Qualcomm Software Development Kit)是高通公司为了支持其IPQ系列芯片(包括IPQ4019)而提供的软件开发套件。QSDK为开发者提供了丰富的软件资源和开发文档,这使得开发者可以更容易地开发出性能优化、功能丰富的网络设备固件和应用软件。QSDK中包含了内核、驱动、协议栈以及用户空间的库文件和示例程序等,开发者可以基于这些资源进行二次开发,以满足不同客户的需求。 开源代码(Open Source Code)是指源代码可以被任何人查看、修改和分发的软件。开源代码通常发布在公共的代码托管平台,如GitHub、GitLab或SourceForge上,它们鼓励社区协作和知识共享。开源软件能够通过集体智慧的力量持续改进,并且为开发者提供了一个测试、验证和改进软件的机会。开源项目也有助于降低成本,因为企业或个人可以直接使用社区中的资源,而不必从头开始构建软件。 U-Boot是一种流行的开源启动加载程序,广泛用于嵌入式设备的引导过程。它支持多种处理器架构,包括ARM、MIPS、x86等,能够初始化硬件设备,建立内存空间的映射,从而加载操作系统。U-Boot通常作为设备启动的第一段代码运行,它为系统提供了灵活的接口以加载操作系统内核和文件系统。 标题中提到的"uci-2015-08-27.1.tar.gz"是一个开源项目的压缩包文件,其中"uci"很可能是指一个具体项目的名称,比如U-Boot的某个版本或者是与U-Boot配置相关的某个工具(U-Boot Config Interface)。日期"2015-08-27.1"表明这是该项目的2015年8月27日的第一次更新版本。".tar.gz"是Linux系统中常用的归档文件格式,用于将多个文件打包并进行压缩,方便下载和分发。" 描述中复述了标题的内容,强调了文件是关于IPQ4019处理器的QSDK资源,且这是一个开源代码包。此处未提供额外信息。 标签"软件/插件"指出了这个资源的性质,即它是一个软件资源,可能包含程序代码、库文件或者其他可以作为软件一部分的插件。 在文件名称列表中,"uci-2015-08-27.1"与标题保持一致,表明这是一个特定版本的软件或代码包。由于实际的文件列表中只提供了这一项,我们无法得知更多的文件信息,但可以推测这是一个单一文件的压缩包。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【PDF表格创建与编辑】:使用Apache PDFBox和iText库制作表格,表格处理不求人

![java 各种pdf处理常用库介绍与使用](https://img-blog.csdnimg.cn/img_convert/6ae15afdef45b1d8fe6d289f0065d18c.png) # 1. PDF表格创建与编辑概述 在当今数字化时代,PDF格式因其可移植性和可维护性成为了电子文档的首选。在诸多应用场景中,表格作为一种重要的信息传递工具,其创建与编辑的需求日益增长。本章节将为读者提供一个关于PDF表格创建与编辑的概述,为后续章节中使用Apache PDFBox和iText库进行深入探讨奠定基础。 ## 1.1 PDF表格的作用与重要性 PDF表格在商务沟通、数据分析
recommend-type

python输出txt文件

在Python中,你可以使用内置的`open()`函数来创建和写入TXT文件。下面是一个简单的例子: ```python # 打开文件(如果不存在则创建) with open('example.txt', 'w') as file: # 写入文本内容 file.write('这是你要写入的内容') # 如果你想追加内容而不是覆盖原有文件 # 使用 'a' 模式(append) # with open('example.txt', 'a') as file: # file.write('\n这是追加的内容') # 关闭文件时会自动调用 `close()` 方法,但使
recommend-type

高频组电赛必备:掌握数字频率合成模块要点

资源摘要信息:"2022年电赛 高频组必备模块 数字频率合成模块" 数字频率合成(DDS,Direct Digital Synthesis)技术是现代电子工程中的一种关键技术,它允许通过数字方式直接生成频率可调的模拟信号。本模块是高频组电赛参赛者必备的组件之一,对于参赛者而言,理解并掌握其工作原理及应用是至关重要的。 本数字频率合成模块具有以下几个关键性能参数: 1. 供电电压:模块支持±5V和±12V两种供电模式,这为用户提供了灵活的供电选择。 2. 外部晶振:模块自带两路输出频率为125MHz的外部晶振,为频率合成提供了高稳定性的基准时钟。 3. 输出信号:模块能够输出两路频率可调的正弦波信号。其中,至少有一路信号的幅度可以编程控制,这为信号的调整和应用提供了更大的灵活性。 4. 频率分辨率:模块提供的频率分辨率为0.0291Hz,这样的精度意味着可以实现非常精细的频率调节,以满足高频应用中的严格要求。 5. 频率计算公式:模块输出的正弦波信号频率表达式为 fout=(K/2^32)×CLKIN,其中K为设置的频率控制字,CLKIN是外部晶振的频率。这一计算方式表明了频率输出是通过编程控制的频率控制字来设定,从而实现高精度的频率合成。 在高频组电赛中,参赛者不仅需要了解数字频率合成模块的基本特性,还应该能够将这一模块与其他模块如移相网络模块、调幅调频模块、AD9854模块和宽带放大器模块等结合,以构建出性能更优的高频信号处理系统。 例如,移相网络模块可以实现对信号相位的精确控制,调幅调频模块则能够对信号的幅度和频率进行调整。AD9854模块是一种高性能的DDS芯片,可以用于生成复杂的波形。而宽带放大器模块则能够提供足够的增益和带宽,以保证信号在高频传输中的稳定性和强度。 在实际应用中,电赛参赛者需要根据项目的具体要求来选择合适的模块组合,并进行硬件的搭建与软件的编程。对于数字频率合成模块而言,还需要编写相应的控制代码以实现对K值的设定,进而调节输出信号的频率。 交流与讨论在电赛准备过程中是非常重要的。与队友、指导老师以及来自同一领域的其他参赛者进行交流,不仅可以帮助解决技术难题,还可以相互启发,激发出更多创新的想法和解决方案。 总而言之,对于高频组的电赛参赛者来说,数字频率合成模块是核心组件之一。通过深入了解和应用该模块的特性,结合其他模块的协同工作,参赛者将能够构建出性能卓越的高频信号处理设备,从而在比赛中取得优异成绩。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依