FD_SETSIZE是什么

时间: 2024-08-16 18:09:33 浏览: 46
`FD_SETSIZE`是一个预定义的宏,在头文件 `<sys/select.h>` 中,它表示`fd_set` 结构体的最大大小,用于容纳文件描述符集合中的元素。`fd_set` 是一个二进制掩码数组,每个元素对应一个文件描述符(通常是8位,但在一些老版本的系统中可能小于8位,取决于平台支持的最大整数位数)。 当你创建一个新的`fd_set`时,它的大小会被限制为`FD_SETSIZE`。这保证了`fd_set`可以在大多数情况下适应操作系统提供的最大数量的并发连接或文件描述符。如果你尝试添加超过`FD_SETSIZE`数量的描述符到`fd_set`,则超出部分将不会被跟踪,所以建议在实际使用中始终确保不超过这个上限。 尽管现代系统通常提供足够的`FD_SETSIZE`值,但为了保证代码的兼容性和灵活性,还是应该避免硬编码这个值,而是直接引用`FD_SETSIZE`。例如: ```c #include <sys/select.h> fd_set readfds; int max_fd = ...; // 获取所有已打开文件描述符的最大值 // 验证并调整readfds大小 FD_ZERO(&readfds); FD_SET(max_fd, &readfds); if (max_fd + 1 > FD_SETSIZE) { printf("Too many file descriptors to handle.\n"); } else { // 使用readfds进行select操作 } ``` 这样可以确保代码适应不同的环境。
相关问题

FD_SETSIZE

FD_SETSIZE是一个宏定义,它定义了在使用select函数进行I/O多路复用时,文件描述符集合的最大大小。在Linux系统中,FD_SETSIZE的默认值是1024。 使用select函数时,需要创建一个文件描述符集合,用于存放需要监视的文件描述符。这个文件描述符集合的大小不能超过FD_SETSIZE。当调用select函数时,内核会检查文件描述符集合中的每个文件描述符,以确定是否有可读、可写或异常事件发生。 需要注意的是,FD_SETSIZE的值是固定的,无法在运行时更改。如果需要同时监视的文件描述符超过了FD_SETSIZE的大小,就需要使用其他方法,如epoll或kqueue来实现更高效的I/O多路复用。

fd_set是什么类型

fd_set是一种数据类型,它是一个位向量(bit vector),用于表示一组文件描述符。在使用fd_set之前,需要用FD_ZERO宏将其清零,然后使用FD_SET宏将需要监视的文件描述符添加到fd_set中。 fd_set的定义在头文件`<sys/select.h>`中,它通常是一个结构体,如下所示: ``` typedef struct fd_set { unsigned long fds_bits[FD_SETSIZE / (8 * sizeof(unsigned long))]; } fd_set; ``` 其中,`FD_SETSIZE`是fd_set中最大的文件描述符值加1,`fds_bits`是一个位向量数组,每个元素表示一组文件描述符。当需要监视的文件描述符的值为i时,将`fds_bits[i/sizeof(unsigned long)]`的第`i%sizeof(unsigned long)`位设置为1,表示该文件描述符需要被监视。 fd_set的使用通常和select函数一起使用,select函数用于在一组文件描述符中选择读/写/异常事件就绪的文件描述符,而fd_set用于表示这组文件描述符。

相关推荐

int server_Listening(int server_sockfd) { struct sockaddr_in client_address; int client_sockfd, ret = 0; int select_result,fd,client_len,data_size; struct timeval timeout; fd_set readfds, testfds; FD_ZERO(&readfds); FD_SET(server_sockfd, &readfds); while(1) { //每一轮监听后结构体被清0,每监听完一轮就要对结构体重新赋值,指定监听对象 testfds = readfds; timeout.tv_sec = 2; timeout.tv_usec = 500000; select_result = select(FD_SETSIZE, &testfds, NULL, NULL, &timeout); if (select_result < 0) { return -1; } //perr_exit("select error"); for(fd = 0; fd < FD_SETSIZE; fd++) /*扫描所有的socket(文件)描述符*/ { if(FD_ISSET(fd,&testfds))/*找到可以读写相关socket(文件)描述符*/ { if(fd == server_sockfd) //为服务器socket,是则表示为客户请求连接。 { client_len = sizeof(client_address); client_sockfd = accept(server_sockfd,(struct sockaddr *)&client_address,&client_len); if(client_sockfd < 0) return -1; FD_SET(client_sockfd, &readfds);//将客户端socket加入到集合中 } else //客户端socket中有数据请求时 { ioctl(fd, FIONREAD, &data_size);//nread得到fd缓冲区的大小,就是当client写入缓冲区,这操作是读取缓冲区的大小 // n=read(fd,buf,sizeof(buf));//n即和nread一致 /*客户数据请求完毕,关闭套接字,从集合中清除相应描述符 */ if(data_size == 0) { //test FASTCGI_LOG("\n client_close_remore :%d\n\n\n\n",fd); close(fd); FD_CLR(fd, &readfds); } else if(!PerformServerTransfer(fd)){ return -1; } } } } } }帮我优化这个函数 形参为sockfd,PerformServerTransfer函数为连接之后的通信 ,帮我优化这个server_Listening函数

int server_Listening(int server_sockfd) { struct sockaddr_in client_address; int client_sockfd, ret = 0; int select_result,fd,client_len,data_size; struct timeval timeout; fd_set readfds, testfds; FD_ZERO(&readfds); FD_SET(server_sockfd, &readfds); while(1) { //每一轮监听后结构体被清0,每监听完一轮就要对结构体重新赋值,指定监听对象 testfds = readfds; timeout.tv_sec = 2; timeout.tv_usec = 500000; select_result = select(FD_SETSIZE, &testfds, NULL, NULL, &timeout); if (select_result < 0) { return -1; } //perr_exit("select error"); for(fd = 0; fd < FD_SETSIZE; fd++) /*扫描所有的socket(文件)描述符*/ { if(FD_ISSET(fd,&testfds))/*找到可以读写相关socket(文件)描述符*/ { if(fd == server_sockfd) //为服务器socket,是则表示为客户请求连接。 { client_len = sizeof(client_address); client_sockfd = accept(server_sockfd,(struct sockaddr *)&client_address,&client_len); if(client_sockfd < 0) return -1; FD_SET(client_sockfd, &readfds);//将客户端socket加入到集合中 } else //客户端socket中有数据请求时 { ioctl(fd, FIONREAD, &data_size);//nread得到fd缓冲区的大小,就是当client写入缓冲区,这操作是读取缓冲区的大小 // n=read(fd,buf,sizeof(buf));//n即和nread一致 /*客户数据请求完毕,关闭套接字,从集合中清除相应描述符 */ if(data_size == 0) { //test FASTCGI_LOG("\n client_close_remore :%d\n\n\n\n",fd); close(fd); FD_CLR(fd, &readfds); } else if(!PerformServerTransfer(fd)){ return -1; } } } } } }帮我优化这个函数 形参为sockfd,PerformServerTransfer函数为连接之后的通信

你刚刚给我修改的服务器端和客户端的代码后为什么服务器端不显示任何消息 服务器端代码 #define _WINSOCK_DEPRECATED_NO_WARNINGS#include <stdio.h>#include <Winsock2.h>#ifndef MSG_NOSIGNAL#define MSG_NOSIGNAL 0#endif#pragma comment(lib,"ws2_32.lib")int main() { WORD wVersionRequested; WSADATA wsaData; int err; wVersionRequested = MAKEWORD(2, 2); err = WSAStartup(wVersionRequested, &wsaData); if (err != 0) { return 1; } if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 2) { WSACleanup(); return 1; } // 创建套接字并绑定到本地地址和端口 SOCKET sockSrv = socket(AF_INET, SOCK_STREAM, 0); int optval = 1; setsockopt(sockSrv, SOL_SOCKET, SO_REUSEADDR, (const char*)&optval, sizeof(optval)); SOCKADDR_IN addrSrv; addrSrv.sin_addr.S_un.S_addr = htonl(INADDR_ANY); addrSrv.sin_family = AF_INET; addrSrv.sin_port = htons(6000); bind(sockSrv, (SOCKADDR*)&addrSrv, sizeof(SOCKADDR)); // 监听连接请求并接受客户端连接 listen(sockSrv, 5); SOCKADDR_IN addrClient; int len = sizeof(SOCKADDR); SOCKET sockConn; fd_set fdReads; while (1) { // 使用 select() 函数实现非阻塞接收客户端连接 FD_ZERO(&fdReads); FD_SET(sockSrv, &fdReads); int ret = select(sockSrv + 1, &fdReads, NULL, NULL, NULL); if (ret < 0) { break; } if (FD_ISSET(sockSrv, &fdReads)) { sockConn = accept(sockSrv, (SOCKADDR*)&addrClient, &len); char sendBuf[50]; printf(sendBuf, "Welcome %s to here!\n", inet_ntoa(addrClient.sin_addr)); send(sockConn, sendBuf, strlen(sendBuf) + 1, MSG_NOSIGNAL); } // 使用 select() 函数实现非阻塞接收客户端消息 FD_ZERO(&fdReads); FD_SET(sockConn, &fdReads); ret = select(sockConn + 1, &fdReads, NULL, NULL, NULL); if (ret < 0) { break; } if (FD_ISSET(sockConn, &fdReads)) { char recvBuf[50]; recv(sockConn, recvBuf, 50, 0); printf("Received from client: %s\n", recvBuf); // 将客户端发送的消息广播给所有连接的客户端 for (SOCKET i = 0; i < FD_SETSIZE; i++) { if (FD_ISSET(i, &fdReads)) { send(i, recvBuf, strlen(recvBuf) + 1, MSG_NOSIGNAL); } } } } closesocket(sockSrv); WSACleanup(); return 0;}

int server_socket_init(){ int server_sockfd; struct sockaddr_in server_address; server_sockfd = socket(AF_INET, SOCK_STREAM, 0);//建立服务器端socket if(server_sockfd < 0 ) return -1; bzero(&server_address,sizeof(server_address)); server_address.sin_family = AF_INET; //server_address.sin_addr.s_addr = htonl(INADDR_ANY); //本机 server_address.sin_addr.s_addr = inet_addr(SERVER_IP); server_address.sin_port = htons(SERVER_PORT); if(bind(server_sockfd, (struct sockaddr *)&server_address,sizeof(server_address)) < 0 ) { close(server_sockfd); return -1; } if(listen(server_sockfd, 5) < 0) { close(server_sockfd); return -1; } return server_sockfd; } int server_Listening(int server_sockfd) { struct sockaddr_in client_address; int client_sockfd, ret = 0; int select_result,fd,client_len,data_size; struct timeval timeout; fd_set readfds, testfds; FD_ZERO(&readfds); FD_SET(server_sockfd, &readfds); while(1) { //每一轮监听后结构体被清0,每监听完一轮就要对结构体重新赋值,指定监听对象 testfds = readfds; timeout.tv_sec = 2; timeout.tv_usec = 500000; select_result = select(FD_SETSIZE, &testfds,NULL,NULL,NULL); if (select_result < 0) { return -1; } //perr_exit("select error"); for(fd = 0; fd < FD_SETSIZE; fd++) /*扫描所有的socket(文件)描述符*/ { if(FD_ISSET(fd,&testfds))/*找到可以读写相关socket(文件)描述符*/ { if(fd == server_sockfd) //为服务器socket,是则表示为客户请求连接。 { client_len = sizeof(client_address); client_sockfd = accept(server_sockfd,(struct sockaddr *)&client_address,&client_len); if(client_sockfd < 0) return -1; FD_SET(client_sockfd, &readfds);//将客户端socket加入到集合中 } else //客户端socket中有数据请求时 { ioctl(fd, FIONREAD, &data_size);//nread得到fd缓冲区的大小,就是当client写入缓冲区,这操作是读取缓冲区的大小 // n=read(fd,buf,sizeof(buf));//n即和nread一致 /*客户数据请求完毕,关闭套接字,从集合中清除相应描述符 */ if(data_size == 0) { //test FASTCGI_LOG("\n client_close_remore :%d\n\n\n\n",fd); close(fd); FD_CLR(fd, &readfds); } else if(!PerformServerTransfer(fd)){ return -1; } } } } } }这个是tcp server端有误么

下面的代码修改一下 需要支持https双向认证int https_post(const char *cert_path, const char *url, const char *body, char *response) { int sockfd, len; struct sockaddr_in dest; struct hostent *host; SSL_CTX *ctx; SSL ssl; char request[MAX_BUF_SIZE], buf[MAX_BUF_SIZE]; // 初始化OpenSSL库 SSL_library_init(); SSL_load_error_strings(); OpenSSL_add_all_algorithms(); // 解析主机名 //printf("66666666 %s\n", url); char hostname[2560]; getHostFromURL(url, hostname); host = gethostbyname(hostname); if (host == NULL) { perror("gethostbyname"); return -1; } // 创建套接字 sockfd = socket(AF_INET, SOCK_STREAM, 0); if (sockfd < 0) { perror("socket"); return -1; } // 设置目标地址 bzero(&dest, sizeof(dest)); dest.sin_family = AF_INET; dest.sin_port = htons(443); dest.sin_addr.s_addr = (long)host->h_addr; // 连接服务器 if (connect(sockfd, (struct sockaddr)&dest, sizeof(dest)) != 0) { perror("connect"); return -1; } ctx = SSL_CTX_new(TLS_method()); // 设置支持的协议版本为 TLSv1.2 SSL_CTX_set_min_proto_version(ctx, TLS1_2_VERSION); SSL_CTX_set_max_proto_version(ctx, TLS1_2_VERSION); if (ctx == NULL) { perror("SSL_CTX_new"); return -1; } // 加载证书 if (SSL_CTX_load_verify_locations(ctx, cert_path, NULL) != 1) { perror("SSL_CTX_load_verify_locations"); return -1; } // 创建SSL ssl = SSL_new(ctx); if (ssl == NULL) { perror("SSL_new"); return -1; } // 将套接字绑定到SSL SSL_set_fd(ssl, sockfd); // SSL握手 if (SSL_connect(ssl) == -1) { perror("SSL_connect"); return -1; } // 构造HTTP请求 char *escaped_url = urlencode(url); sprintf(request, "POST / HTTP/1.1\r\n" "Host: %s\r\n" "Content-Type: application/json\r\n" "Content-Length: %d\r\n" "\r\n" "%s", escaped_url, strlen(body), body); // 发送HTTP请求 SSL_write(ssl, request, strlen(request)); // 接收HTTP响应 len = SSL_read(ssl, buf, MAX_BUF_SIZE); printf("response %s\n", buf); // 关闭SSL和套接字 SSL_free(ssl); close(sockfd); // 处理响应 strncpy(response, buf, len); printf("Child process created with PID %d\n", 60909); response[len] = '\0'; printf("Child process created with PID %d\n", 70909); // 清理OpenSSL库 SSL_CTX_free(ctx); EVP_cleanup(); printf("Child process created with PID %d\n", 909); free(escaped_url); return 0; }

下面函数 第四个参数是什么意思, char *https_request(const char *url, const char *payload, const char *cert_path, const char *key_path, const char *ca_path) { SSL_library_init(); SSL_load_error_strings(); OpenSSL_add_all_algorithms(); // 加载 CA 证书 X509_STORE *store = X509_STORE_new(); X509_LOOKUP *lookup = X509_STORE_add_lookup(store, X509_LOOKUP_file()); X509_LOOKUP_load_file(lookup, ca_path, X509_FILETYPE_PEM); // 加载客户端证书和私钥 SSL_CTX *ctx = SSL_CTX_new(TLS_method()); if (ctx == NULL) { perror("SSL_CTX_new"); return ("A"); } // 设置支持的协议版本为 TLSv1.2 SSL_CTX_set_min_proto_version(ctx, TLS1_2_VERSION); SSL_CTX_set_max_proto_version(ctx, TLS1_2_VERSION); //SSL_CTX *ctx = SSL_CTX_new(TLSv1_2_client_method()); SSL_CTX_use_certificate_file(ctx, cert_path, SSL_FILETYPE_PEM); SSL_CTX_use_PrivateKey_file(ctx, key_path, SSL_FILETYPE_PEM); // 创建 SSL 连接 SSL *ssl = SSL_new(ctx); // 解析 URL char host[256]; char path[4096]; int port = 443; if (sscanf(url, "https://%255[^/]/%4095s", host, path) != 2) { fprintf(stderr, "Error: Invalid URL\n"); return NULL; } // 创建 TCP 连接 int sockfd = socket(AF_INET, SOCK_STREAM, 0); struct sockaddr_in dest_addr; dest_addr.sin_family = AF_INET; dest_addr.sin_port = htons(port); dest_addr.sin_addr.s_addr = inet_addr(host); // 建立连接 connect(sockfd, (struct sockaddr *)&dest_addr, sizeof(dest_addr)); // 将 SSL 连接和 TCP 连接关联 SSL_set_fd(ssl, sockfd); // 进行 SSL 握手 SSL_connect(ssl); // 发送 HTTPS 请求 char request[8192]; snprintf(request, sizeof(request), "POST %s HTTP/1.1\r\n" "Host: %s\r\n" "Content-Type: application/json\r\n" "Content-Length: %zu\r\n" "\r\n" "%s", path, host, strlen(payload), payload); SSL_write(ssl, request, strlen(request)); // 接收 HTTPS 响应 char buf[8192]; int bytes; size_t response_size = 0; char *response_buf = NULL; while ((bytes = SSL_read(ssl, buf, sizeof(buf))) > 0) { response_buf = realloc(response_buf, response_size + bytes + 1); memcpy(response_buf + response_size, buf, bytes); response_size += bytes; } response_buf[response_size] = '\0'; // 关闭 SSL 连接 SSL_shutdown(ssl); // 释放资源 SSL_free(ssl); close(sockfd); SSL_CTX_free(ctx); X509_STORE_free(store); ERR_free_strings(); return response_buf; }

最新推荐

recommend-type

AF_UNIX域的本地进程通信客户端服务端通信源码

6. `read_socket_data(int fd, void *ptr, size_t nbytes)`:从给定的socket文件描述符读取数据,用于接收来自另一端的数据。 7. `set_nonblocking(int sockfd)`:将socket设置为非阻塞模式,这样调用`read_socket_...
recommend-type

5116-微信小程序电影院订票选座系统设计及实现+ssm(源码+数据库+lun文).zip

本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。
recommend-type

C++标准程序库:权威指南

"《C++标准程式库》是一本关于C++标准程式库的经典书籍,由Nicolai M. Josuttis撰写,并由侯捷和孟岩翻译。这本书是C++程序员的自学教材和参考工具,详细介绍了C++ Standard Library的各种组件和功能。" 在C++编程中,标准程式库(C++ Standard Library)是一个至关重要的部分,它提供了一系列预先定义的类和函数,使开发者能够高效地编写代码。C++标准程式库包含了大量模板类和函数,如容器(containers)、迭代器(iterators)、算法(algorithms)和函数对象(function objects),以及I/O流(I/O streams)和异常处理等。 1. 容器(Containers): - 标准模板库中的容器包括向量(vector)、列表(list)、映射(map)、集合(set)、无序映射(unordered_map)和无序集合(unordered_set)等。这些容器提供了动态存储数据的能力,并且提供了多种操作,如插入、删除、查找和遍历元素。 2. 迭代器(Iterators): - 迭代器是访问容器内元素的一种抽象接口,类似于指针,但具有更丰富的操作。它们可以用来遍历容器的元素,进行读写操作,或者调用算法。 3. 算法(Algorithms): - C++标准程式库提供了一组强大的算法,如排序(sort)、查找(find)、复制(copy)、合并(merge)等,可以应用于各种容器,极大地提高了代码的可重用性和效率。 4. 函数对象(Function Objects): - 又称为仿函数(functors),它们是具有operator()方法的对象,可以用作函数调用。函数对象常用于算法中,例如比较操作或转换操作。 5. I/O流(I/O Streams): - 标准程式库提供了输入/输出流的类,如iostream,允许程序与标准输入/输出设备(如键盘和显示器)以及其他文件进行交互。例如,cin和cout分别用于从标准输入读取和向标准输出写入。 6. 异常处理(Exception Handling): - C++支持异常处理机制,通过throw和catch关键字,可以在遇到错误时抛出异常,然后在适当的地方捕获并处理异常,保证了程序的健壮性。 7. 其他组件: - 还包括智能指针(smart pointers)、内存管理(memory management)、数值计算(numerical computations)和本地化(localization)等功能。 《C++标准程式库》这本书详细讲解了这些内容,并提供了丰富的实例和注解,帮助读者深入理解并熟练使用C++标准程式库。无论是初学者还是经验丰富的开发者,都能从中受益匪浅,提升对C++编程的掌握程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

怎样使scanf函数和printf在同一行表示

在C语言中,`scanf` 和 `printf` 通常是分开使用的,因为它们的功能不同,一个负责从标准输入读取数据,另一个负责向标准输出显示信息。然而,如果你想要在一行代码中完成读取和打印,可以创建一个临时变量存储 `scanf` 的结果,并立即传递给 `printf`。但这种做法并不常见,因为它违反了代码的清晰性和可读性原则。 下面是一个简单的示例,展示了如何在一个表达式中使用 `scanf` 和 `printf`,但这并不是推荐的做法: ```c #include <stdio.h> int main() { int num; printf("请输入一个整数: ");
recommend-type

Java解惑:奇数判断误区与改进方法

Java是一种广泛使用的高级编程语言,以其面向对象的设计理念和平台无关性著称。在本文档中,主要关注的是Java中的基础知识和解惑,特别是关于Java编程语言的一些核心概念和陷阱。 首先,文档提到的“表达式谜题”涉及到Java中的取余运算符(%)。在Java中,取余运算符用于计算两个数相除的余数。例如,`i % 2` 表达式用于检查一个整数`i`是否为奇数。然而,这里的误导在于,Java对`%`操作符的处理方式并不像常规数学那样,对于负数的奇偶性判断存在问题。由于Java的`%`操作符返回的是与左操作数符号相同的余数,当`i`为负奇数时,`i % 2`会得到-1而非1,导致`isOdd`方法错误地返回`false`。 为解决这个问题,文档建议修改`isOdd`方法,使其正确处理负数情况,如这样: ```java public static boolean isOdd(int i) { return i % 2 != 0; // 将1替换为0,改变比较条件 } ``` 或者使用位操作符AND(&)来实现,因为`i & 1`在二进制表示中,如果`i`的最后一位是1,则结果为非零,表明`i`是奇数: ```java public static boolean isOdd(int i) { return (i & 1) != 0; // 使用位操作符更简洁 } ``` 这些例子强调了在编写Java代码时,尤其是在处理数学运算和边界条件时,理解运算符的底层行为至关重要,尤其是在性能关键场景下,选择正确的算法和操作符能避免潜在的问题。 此外,文档还提到了另一个谜题,暗示了开发者在遇到类似问题时需要进行细致的测试,确保代码在各种输入情况下都能正确工作,包括负数、零和正数。这不仅有助于发现潜在的bug,也能提高代码的健壮性和可靠性。 这个文档旨在帮助Java学习者和开发者理解Java语言的一些基本特性,特别是关于取余运算符的行为和如何处理边缘情况,以及在性能敏感的场景下优化算法选择。通过解决这些问题,读者可以更好地掌握Java编程,并避免常见误区。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

The Application of Autocorrelation Function in Economics: Economic Cycle Analysis and Forecasting Modeling

# Application of Autocorrelation Function in Economics: Analysis and Forecasting Models for Economic Cycles ## 1. Theoretical Foundations of Autocorrelation Function The Autocorrelation Function (ACF) is a statistical tool used to measure the correlation between data points in time series data tha
recommend-type

ethernet functionality not enabled socket error#10065 No route to host.

When you encounter an Ethernet functionality not enabled error with a socket error code 10065 "No route to host" while attempting to send or receive data over a network, it typically indicates two issues: 1. **Ethernet Functionality Not Enabled**: This error might be related to your system's networ