while i<=850: # 指定条件 target_value = i index_column = 'Stkcd' # 替换为你要判断的索引列名 # 使用条件判断筛选出满足条件的行 if ((df[index_column]) == target_value).all(): filtered_rows = df[df[index_column] == target_value] mydata0=filtered_rows.iloc[:, :5] mydata0=np.array(mydata0) Y_0 = mydata0 @ model.coef_ print(Y_0) result0[i-1]=sum(Y_0)-sum(Y) print("成功计算") else: result0[i-1]=0 i=i+1

时间: 2024-04-14 09:30:48 浏览: 153
这段代码是一个循环语句,从 i=1 到 i=850,根据指定的条件筛选出满足条件的行,并进行相应的计算操作。在每次循环中,首先指定一个目标值 target_value,然后根据索引列名 index_column 与目标值进行比较,筛选出满足条件的行。接下来,将筛选后的数据取前5列,并将其转换为数组。然后,将转换后的数据与模型的系数相乘,得到 Y_0。最后,将 Y_0 的和减去之前的 Y 的和,并存储在 result0 数组中的相应位置。 如果所有满足条件的行都成功计算了 Y_0,则将其结果存储在 result0 数组中。如果没有满足条件的行,则将结果设置为 0。每次循环结束后,i 增加 1,直到循环结束。 请注意,代码中提到的 model.coef_ 表示模型的系数,需要根据实际情况进行定义和赋值。
相关问题

import numpy as np import pandas as pd #%% FSC = pd.read_excel('D:\文档\pythonProject\FS_Comins.xlsx') FSC = FSC.iloc[2:] FSC = FSC.rename( columns = {'B001100000': 'TSale', 'B002100000': 'Tax'}) FSC = FSC.fillna(0) #%% FSC = FSC[['Stkcd','Accper','TSale']] FIT = pd.read_excel('D:\文档\pythonProject\FI_T10.xlsx') FIT = FIT.iloc[2:] FIT['Ind'] = FIT['Indcd'].apply(lambda x: x[0]) IND = FIT[['Stkcd','Accper','Ind']] #%% def My_year(Set,YMD): Set[YMD] = pd.to_datetime(Set[YMD],format='%Y-%m-%d') Set['year'] = Set[YMD].dt.year My_year(FSC,'Accper') My_year(IND,'Accper') #%% HE2 = HE[['Ind','Accper','TSale'] ].groupby(['Ind','Accper'] ).sum().reset_index() HE2 = HE2.rename( columns = {'TSale': 'TSale_sum'}) #%% HE = pd.merge(HE,HE2,on=['Ind','Accper'],how='left') HE['TSale_r'] = HE['TSale'] / HE['TSale_sum'] HE['TSale_r2'] = HE['TSale_r'] **2 #%% HE3 = HE[['Ind','Accper','TSale_r2'] ].groupby(['Ind','Accper'] ).sum().reset_index() HE3 = HE3.rename( columns = {'TSale_r2': 'herf'}) HE3.to_csv( "HE_herf_treated.csv",encoding='utf_8_sig',index = False)

这段代码是用来读取Excel文件并进行数据处理的。首先,使用`pd.read_excel()`函数读取名为'FS_Comins.xlsx'的Excel文件,并将数据存储在名为`FSC`的DataFrame中。然后,对数据进行一些处理,如删除前两行、重命名列、填充缺失值等。接下来,选择`FSC`中的'Stkcd'、'Accper'和'TSale'列,并将其存储在`FSC`中。 同样的步骤也适用于另一个Excel文件'FI_T10.xlsx',将数据存储在名为`FIT`的DataFrame中。 接下来定义了一个名为`My_year`的函数,用于将日期格式转换为年份,并将其应用于`FSC`和`IND`的'Accper'列。 然后,对`HE`进行了一些数据处理操作,包括对'TSale'列按'Ind'和'Accper'分组求和,并将结果存储在名为`HE2`的DataFrame中。然后,将`HE2`与原始的`HE`进行合并,并计算'TSale'的相对值和平方值,分别存储在'TSale_r'和'TSale_r2'列中。 最后,对'TSale_r2'列按'Ind'和'Accper'分组求和,并将结果存储在名为`HE3`的DataFrame中。最后,将`HE3`保存为CSV文件'HE_herf_treated.csv'。 这段代码主要是数据处理的部分,可能是为了后续的分析和计算做准备。

import numpy as np import pandas as pd import os os.chdir('D:\Download') F_ = pd.read_excel('FS_Comscfd.xlsx') F = F_.iloc[2:] F = F.fillna(0) F['Tax'] = F['C001021000'] - F['C001012000'] F['LTax'] = F['Tax'].shift(1) F['chtx'] = (F['Tax'] - F['LTax'])/ F['LTax'] F = F[~F.isin([np.nan, np.inf, -np.inf]).any(1)] # F = F.dropna() F = F[['Stkcd', 'Accper', 'chtx']].reset_index(drop = True) F.to_csv("chtx_treated.csv",encoding='utf_8_sig',index = False) F

这段代码看起来是在读取一个名为 "FS_Comscfd.xlsx" 的 Excel 文件,并进行一系列的数据处理操作,最后将处理后的结果保存为 "chtx_treated.csv" 文件。 首先,代码导入了一些必要的库,如 numpy、pandas 和 os。然后,使用 `os.chdir()` 将当前工作目录更改为 "D:\Download"。 接下来,使用 `pd.read_excel()` 读取名为 "FS_Comscfd.xlsx" 的 Excel 文件,并将其存储在变量 F_ 中。 然后,进行一些数据处理操作。首先从第三行开始选择数据,并使用 `fillna(0)` 将缺失值填充为0。接着,计算 'Tax' 列的值,该列是 'C001021000' 列减去 'C001012000' 列的结果。然后创建 'LTax' 列,该列是 'Tax' 列向上移动一行。接着计算 'chtx' 列,该列是 'Tax' 列减去 'LTax' 列除以 'LTax' 列的结果。最后,使用 `~F.isin([np.nan, np.inf, -np.inf]).any(1)` 过滤掉包含 NaN、正无穷或负无穷的行。 最后,将筛选后的结果保留 'Stkcd'、'Accper' 和 'chtx' 列,并将结果保存为名为 "chtx_treated.csv" 的 CSV 文件。 如果你有更多的问题,请随时提问。
阅读全文

相关推荐

最新推荐

recommend-type

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx
recommend-type

【大越期货-2024研报】生猪期货早报.pdf

研究报告
recommend-type

数学建模学习资料 姜启源数学模型课件 M07 差分方程模型 共33页.pptx

数学建模学习资料 姜启源数学模型课件 M07 差分方程模型 共33页.pptx
recommend-type

【宝城期货-2024研报】宝城期货品种套利数据日报.pdf

研究报告
recommend-type

从头开始的 YOLOv1.zip

从头开始的 YOLOv1自述YOLOv1 的实现来自博客必需的pytorch 1.1.0火炬视觉numpy > 1.16.2opencv 3.4.1VOC2012数据集这个 repo 现在能做什么使用VOC2012数据集进行训练推理(测试图像)结果待办事项添加 mAP 指标
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。