车间调度算法python
时间: 2023-08-28 10:22:33 浏览: 125
车间调度算法
在Python中,可以使用不同的算法来实现车间调度。下面是一些常见的车间调度算法的Python实现示例:
1. 贪心算法:
```python
def greedy_scheduling(jobs):
jobs = sorted(jobs, key=lambda x: x[1]) # 按工序的优先级进行排序
schedule = []
for job in jobs:
start_time = max(job[0], schedule[-1][1]) if schedule else job[0]
end_time = start_time + job[2]
schedule.append((job[0], end_time))
return schedule
```
2. 遗传算法:
```python
import random
def genetic_scheduling(jobs, population_size, generations):
population = [random.sample(jobs, len(jobs)) for _ in range(population_size)] # 随机生成初始种群
for _ in range(generations):
fitness_scores = [fitness(job_order) for job_order in population] # 计算每个个体的适应度
elite_population = [population[i] for i in sorted(range(population_size), key=lambda x: fitness_scores[x], reverse=True)[:population_size // 2]] # 选择适应度较高的个体作为精英个体
offspring_population = []
while len(offspring_population) < population_size - len(elite_population):
parent1, parent2 = random.sample(elite_population, 2) # 随机选择两个父代个体
child = crossover(parent1, parent2) # 交叉产生子代
offspring_population.append(mutate(child)) # 随机变异子代
population = elite_population + offspring_population
best_job_order = max(population, key=lambda x: fitness(x)) # 选择适应度最高的个体作为最优解
return best_job_order
def fitness(job_order):
# 计算个体的适应度
# 根据工序顺序计算总生产时间、成本等指标,并将其作为适应度评价
pass
def crossover(parent1, parent2):
# 交叉产生子代
pass
def mutate(child):
# 变异子代
pass
```
3. 模拟退火算法:
```python
import math
import random
def simulated_annealing_scheduling(jobs, initial_temperature, cooling_rate, num_iterations):
current_solution = random.sample(jobs, len(jobs)) # 随机生成初始解
best_solution = current_solution.copy()
current_cost = calculate_cost(current_solution) # 计算当前解的成本
best_cost = current_cost
for i in range(num_iterations):
temperature = initial_temperature / (1 + cooling_rate * i) # 更新温度
new_solution = get_neighbor(current_solution) # 获得当前解的邻居解
new_cost = calculate_cost(new_solution) # 计算邻居解的成本
阅读全文