遗传算法 python 车间调度
时间: 2023-11-02 11:07:34 浏览: 118
遗传算法是一种优化算法,常用于解决车间调度等问题。通过模拟生物进化的过程,遗传算法可以搜索到问题的最优解。在Python中,可以使用遗传算法库进行车间调度问题的求解。以下是一个使用遗传算法的Python代码示例,供您参考学习:
```python
import random
# 定义车间调度问题的适应度函数
def fitness_function(schedule):
# 计算每个工件的完工时间,并返回总体完工时间
total_completion_time = 0
for job in schedule:
completion_time = sum(job)
total_completion_time += completion_time
return total_completion_time
# 定义遗传算法的初始化函数
def initialize_population(population_size):
# 随机生成初始种群
population = []
for _ in range(population_size):
schedule = []
for _ in range(num_jobs):
operation_times = [random.randint(1, 10) for _ in range(num_machines)]
schedule.append(operation_times)
population.append(schedule)
return population
# 定义遗传算法的选择函数
def selection(population, num_parents):
# 选择适应度最高的父代个体作为后代的父母
parents = sorted(population, key=fitness_function)[:num_parents]
return parents
# 定义遗传算法的交叉函数
def crossover(parents, num_offspring):
# 使用单点交叉生成指定数量的后代
offspring = []
while len(offspring) < num_offspring:
parent1 = random.choice(parents)
parent2 = random.choice(parents)
crossover_point = random.randint(1, num_jobs - 1)
child = parent1[:crossover_point] + parent2[crossover_point:]
offspring.append(child)
return offspring
# 定义遗传算法的变异函数
def mutation(offspring):
# 对后代个体的某些基因进行随机变异
for child in offspring:
for job in child:
for i in range(num_machines):
if random.random() < mutation_rate:
job[i] = random.randint(1, 10)
return offspring
# 定义遗传算法的主函数
def genetic_algorithm(population_size, num_generations):
population = initialize_population(population_size)
for _ in range(num_generations):
parents = selection(population, num_parents)
offspring = crossover(parents, num_offspring)
offspring = mutation(offspring)
population = parents + offspring
best_schedule = min(population, key=fitness_function)
return best_schedule
# 设置问题的参数
num_jobs = 5 # 工件数量
num_machines = 3 # 机器数量
mutation_rate = 0.1 # 变异概率
population_size = 50 # 种群规模
num_parents = 10 # 父代数量
num_offspring = 40 # 后代数量
num_generations = 100 # 迭代次数
# 调用遗传算法求解车间调度问题
best_schedule = genetic_algorithm(population_size, num_generations)
# 输出最优解
print("Best schedule:", best_schedule)
```
阅读全文