遗传算法求解车间调度问题python
时间: 2023-10-09 17:15:57 浏览: 179
遗传算法可以用来求解车间调度问题。下面是一个使用Python实现的简单示例代码:
```python
import random
# 初始化种群
def init_population(population_size, gene_size):
population = []
for _ in range(population_size):
chromosome = [i+1 for i in range(gene_size)]
random.shuffle(chromosome)
population.append(chromosome)
return population
# 计算染色体适应度
def calculate_fitness(chromosome):
fitness = 0
for i in range(len(chromosome)-1):
if chromosome[i] != chromosome[i+1]:
fitness += 1
return fitness
# 选择操作
def selection(population):
fitness_values = [calculate_fitness(chromosome) for chromosome in population]
total_fitness = sum(fitness_values)
probabilities = [fitness/total_fitness for fitness in fitness_values]
selected_chromosomes = random.choices(population, probabilities, k=len(population))
return selected_chromosomes
# 交叉操作
def crossover(parent1, parent2):
point = random.randint(0, len(parent1)-1)
child1 = parent1[:point] + parent2[point:]
child2 = parent2[:point] + parent1[point:]
return child1, child2
# 变异操作
def mutation(chromosome):
point1, point2 = random.sample(range(len(chromosome)), 2)
chromosome[point1], chromosome[point2] = chromosome[point2], chromosome[point1]
return chromosome
# 遗传算法求解车间调度问题
def solve_job_shop_scheduling(population_size, gene_size, max_generations):
population = init_population(population_size, gene_size)
best_fitness = float('inf')
best_chromosome = None
for generation in range(max_generations):
selected_chromosomes = selection(population)
new_population = []
while len(new_population) < population_size:
parent1, parent2 = random.sample(selected_chromosomes, 2)
child1, child2 = crossover(parent1, parent2)
child1 = mutation(child1)
child2 = mutation(child2)
new_population.extend([child1, child2])
population = new_population
for chromosome in population:
fitness = calculate_fitness(chromosome)
if fitness < best_fitness:
best_fitness = fitness
best_chromosome = chromosome
print(f"Generation {generation+1}: Best Fitness = {best_fitness}")
return best_chromosome
# 示例使用
population_size = 100
gene_size = 10
max_generations = 100
best_chromosome = solve_job_shop_scheduling(population_size, gene_size, max_generations)
print("Best Chromosome:", best_chromosome)
```
这是一个简单的遗传算法示例,用于求解车间调度问题。其中,种群的大小、基因的大小以及最大迭代次数可以根据具体问题进行调整。代码中的适应度函数根据车间调度问题的实际需求进行定义和修改。
阅读全文