Transformer-Unet
时间: 2024-02-16 10:58:36 浏览: 145
Transformer-Unet:使用变压器编码器的Unet实现
5星 · 资源好评率100%
Transformer-Unet是一种结合了Transformer和Unet的神经网络架构,用于图像分割任务。它是基于Transformer的自注意力机制和Unet的编码-解码结构进行了改进和融合。
在传统的Unet中,编码器部分通过卷积层逐渐提取图像的特征,并将特征信息传递给解码器部分进行分割。而Transformer-Unet则引入了Transformer的自注意力机制,用于替代Unet中的卷积操作。自注意力机制能够捕捉全局上下文信息,有助于更好地理解图像中的语义信息。
具体来说,Transformer-Unet的编码器部分由多个Transformer编码器堆叠而成,每个编码器包含多头自注意力机制和前馈神经网络。这样可以在不同层次上提取图像的特征,并保留全局上下文信息。
解码器部分则类似于传统的Unet,通过上采样和卷积操作将编码器部分提取到的特征进行逐步恢复和重建,最终得到分割结果。
Transformer-Unet的优点在于能够同时利用Transformer和Unet的优势,既能够捕捉全局上下文信息,又能够保留细节特征。这使得它在图像分割任务中具有较好的性能。
阅读全文