LUP分解 python
时间: 2023-10-15 14:26:41 浏览: 262
在Python中,LUP分解是一种常见的线性方程组求解方法。它通过将矩阵分解为一个下三角矩阵(L)、一个上三角矩阵(U)和一个置换矩阵(P)的乘积来解决线性方程组。在LUP分解中,引入了一个选择步骤,以解决可能导致无法进行LUP分解的情况。以下是一个使用LUP分解解决线性方程组的Python代码示例:
```python
def solve_by_lup(A, b):
L, U, P = lup_decomposition(A) # 进行LUP分解
pb = P * Matrix([[num for num in b]) # 对向量b进行置换
pb_values = [i for i in pb.__lines # 将置换后的向量转换为列表
return solve(L, U, pb_values) # 使用代入法求解方程组
# 示例用法
A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
b = [3, 6, 9]
x = solve_by_lup(A, b)
print(x)
```
在上述代码中,`lup_decomposition`函数用于进行LUP分解,`solve`函数用于使用代入法求解方程组。通过调用`solve_by_lup`函数,传入矩阵A和向量b,即可得到线性方程组的解x。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [python实现LU分解与LUP分解](https://blog.csdn.net/qq_43409560/article/details/123928976)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* [5.2 LUP分解](https://blog.csdn.net/m0_66201040/article/details/123812692)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文