CuDNNLSTM转为pytorch LSTM
时间: 2023-11-09 20:01:15 浏览: 217
将CuDNNLSTM转为pytorch LSTM需要注意以下几点:
1. CuDNNLSTM是基于CUDA的深度学习库,而pytorch是基于Python的深度学习库,因此需要先将模型从CuDNNLSTM转为pytorch模型。
2. 在转换过程中,需要注意两者的参数设置不同,例如CuDNNLSTM中的dropout参数对应pytorch中的dropout参数和recurrent_dropout参数。
3. 在转换过程中,需要注意两者的输入格式不同,例如CuDNNLSTM中的输入格式为(batch_size, timesteps, input_dim),而pytorch中的输入格式为(timesteps, batch_size, input_dim)。
下面是一个将CuDNNLSTM转为pytorch LSTM的示例代码:
```python
import torch
import torch.nn as nn
# 定义CuDNNLSTM模型
cudnn_lstm = nn.LSTM(input_size=10, hidden_size=20, num_layers=2, dropout=0.2, bidirectional=True)
# 转换为pytorch LSTM模型
input_size = 10
hidden_size = 20
num_layers = 2
dropout = 0.2
bidirectional = True
pytorch_lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional)
# 复制参数
for i in range(num_layers * (2 if bidirectional else 1)):
weight_ih = getattr(cudnn_lstm, 'weight_ih_l{}'.format(i))
weight_hh = getattr(cudnn_lstm, 'weight_hh_l{}'.format(i))
bias_ih = getattr(cudnn_lstm, 'bias_ih_l{}'.format(i))
bias_hh = getattr(cudnn_lstm, 'bias_hh_l{}'.format(i))
# 将参数复制到pytorch LSTM中
getattr(pytorch_lstm, 'weight_ih_l{}'.format(i)).data.copy_(weight_ih.data)
getattr(pytorch_lstm, 'weight_hh_l{}'.format(i)).data.copy_(weight_hh.data)
getattr(pytorch_lstm, 'bias_ih_l{}'.format(i)).data.copy_(bias_ih.data)
getattr(pytorch_lstm, 'bias_hh_l{}'.format(i)).data.copy_(bias_hh.data)
# 相关问题:
阅读全文