图片经过Query adaptive conv后进入ResNet50,那么ResNet50的输入是什么
时间: 2024-08-16 19:06:50 浏览: 36
Query Adaptive Conv(查询自适应卷积)通常是在视觉问答、图像检索等任务中使用的模块,它可以根据查询向量动态调整卷积核。当图片经过Query Adaptive Conv处理后,这个过程会生成一些特征表示,这些表示会被作为输入传递到后续的模型,比如ResNet50。
ResNet50是一种深度残差网络,其输入是一张固定尺寸(如224x224像素)的RGB彩色图像。也就是说,尽管Query Adaptive Conv的输出可能会因为其自适应特性有所不同,但ResNet50接收到的依然是这种标准化的图像数据。输入图像是通过预处理步骤(如归一化、缩放等)准备好后送入模型的。
相关问题
Vgg加FPN和ResNet加FPN后 在分类前融合 代码
以下是使用PyTorch实现VGG和ResNet与FPN的融合的代码:
``` python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import vgg16, resnet50
class VGG_FPN(nn.Module):
def __init__(self, num_classes=1000):
super(VGG_FPN, self).__init__()
vgg = vgg16(pretrained=True)
self.features = vgg.features
self.fpn_layers = nn.Sequential(
nn.Conv2d(512, 256, kernel_size=1, stride=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 512, kernel_size=1, stride=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 1024, kernel_size=1, stride=1),
nn.BatchNorm2d(1024),
nn.ReLU(inplace=True),
nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(1024),
nn.ReLU(inplace=True)
)
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(1024 * 7 * 7, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes)
)
def forward(self, x):
x = self.features(x)
c3, c4, c5 = x.size()
p5 = self.fpn_layers(x)
p4 = F.upsample(p5, size=(c4), mode="nearest") + self.fpn_layers(x)
p3 = F.upsample(p4, size=(c3), mode="nearest") + self.fpn_layers(x)
x = F.adaptive_avg_pool2d(p3, output_size=(1, 1))
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
class ResNet_FPN(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet_FPN, self).__init__()
resnet = resnet50(pretrained=True)
self.conv1 = resnet.conv1
self.bn1 = resnet.bn1
self.relu = resnet.relu
self.maxpool = resnet.maxpool
self.layer1 = resnet.layer1
self.layer2 = resnet.layer2
self.layer3 = resnet.layer3
self.layer4 = resnet.layer4
self.fpn_layers = nn.Sequential(
nn.Conv2d(2048, 256, kernel_size=1, stride=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 512, kernel_size=1, stride=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 1024, kernel_size=1, stride=1),
nn.BatchNorm2d(1024),
nn.ReLU(inplace=True),
nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(1024),
nn.ReLU(inplace=True)
)
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.fc = nn.Linear(1024 * 7 * 7, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
c2 = self.layer1(x)
c3 = self.layer2(c2)
c4 = self.layer3(c3)
c5 = self.layer4(c4)
p5 = self.fpn_layers(c5)
p4 = F.upsample(p5, size=(c4.size()[2], c4.size()[3]), mode="nearest") + self.fpn_layers(c4)
p3 = F.upsample(p4, size=(c3.size()[2], c3.size()[3]), mode="nearest") + self.fpn_layers(c3)
x = F.adaptive_avg_pool2d(p3, output_size=(1, 1))
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
以上代码实现了VGG和ResNet与FPN的融合,其中VGG_FPN和ResNet_FPN分别代表融合后的模型。模型分为特征提取层和分类层两部分,特征提取层通过VGG或ResNet提取特征,然后再使用FPN将多层特征融合。分类层则将融合后的特征作为输入,输出分类结果。注意,这里使用了nn.Sequential()将多个卷积层组成了一个整体。
使用resnet骨干网络提取图像特征怎样加入inception多尺度模块
可以使用ResNet的最后一个卷积层的输出作为输入,然后添加Inception多尺度模块,将不同尺度的卷积核并行应用到输入特征上,最后将不同尺度的输出特征拼接在一起。具体步骤如下:
1. 使用ResNet骨干网络提取图像特征,得到最后一个卷积层的输出。
2. 定义Inception多尺度模块,包括不同尺度的卷积核和池化核,并行应用到输入特征上,得到不同尺度的输出特征。
3. 将不同尺度的输出特征拼接在一起,得到最终的特征表示。
4. 将最终的特征表示输入到全连接层进行分类或者回归等任务。
以下是代码示例,假设ResNet的最后一个卷积层输出为`x`,Inception多尺度模块包括3个分支:
```python
import torch.nn as nn
class InceptionModule(nn.Module):
def __init__(self, in_channels, out_channels):
super(InceptionModule, self).__init__()
# 1x1 convolution branch
self.branch1x1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1)
# 3x3 convolution branch
self.branch3x3 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1),
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
)
# 5x5 convolution branch
self.branch5x5 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1),
nn.Conv2d(out_channels, out_channels, kernel_size=5, stride=1, padding=2)
)
# max pooling branch
self.branch_pool = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1)
)
def forward(self, x):
out1x1 = self.branch1x1(x)
out3x3 = self.branch3x3(x)
out5x5 = self.branch5x5(x)
out_pool = self.branch_pool(x)
out = torch.cat([out1x1, out3x3, out5x5, out_pool], dim=1)
return out
class ResNetInception(nn.Module):
def __init__(self, num_classes):
super(ResNetInception, self).__init__()
self.resnet = models.resnet50(pretrained=True)
self.inception1 = InceptionModule(2048, 512)
self.inception2 = InceptionModule(2048 + 4 * 512, 1024)
self.inception3 = InceptionModule(2048 + 4 * 1024, 2048)
self.fc = nn.Linear(2048, num_classes)
def forward(self, x):
# ResNet backbone
x = self.resnet.conv1(x)
x = self.resnet.bn1(x)
x = self.resnet.relu(x)
x = self.resnet.maxpool(x)
x = self.resnet.layer1(x)
x = self.resnet.layer2(x)
x = self.resnet.layer3(x)
x = self.resnet.layer4(x)
# Inception module 1
out1 = self.inception1(x)
# Inception module 2
out2 = torch.cat([x, out1], dim=1)
out2 = self.inception2(out2)
# Inception module 3
out3 = torch.cat([x, out1, out2], dim=1)
out3 = self.inception3(out3)
# Global average pooling and fully connected layer
out = F.adaptive_avg_pool2d(out3, output_size=1)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
```
在上面的代码中,ResNet50骨干网络的输出为`x`,然后分别经过3个Inception多尺度模块,每个模块的输出作为下一个模块的输入。最终的特征表示为第3个模块的输出,经过全局平均池化后输入到全连接层进行分类。
阅读全文