图片经过Query adaptive conv后进入ResNet50,那么ResNet50的输入是什么
时间: 2024-08-16 21:06:50 浏览: 43
Query Adaptive Conv(查询自适应卷积)通常是在视觉问答、图像检索等任务中使用的模块,它可以根据查询向量动态调整卷积核。当图片经过Query Adaptive Conv处理后,这个过程会生成一些特征表示,这些表示会被作为输入传递到后续的模型,比如ResNet50。
ResNet50是一种深度残差网络,其输入是一张固定尺寸(如224x224像素)的RGB彩色图像。也就是说,尽管Query Adaptive Conv的输出可能会因为其自适应特性有所不同,但ResNet50接收到的依然是这种标准化的图像数据。输入图像是通过预处理步骤(如归一化、缩放等)准备好后送入模型的。
相关问题
FADC卷积改进resnet18
### 使用FADC方法改进ResNet18模型中的卷积层
为了提升 ResNet18 的性能并增强其特征提取能力,可以采用 FADC (Frequency Adaptive Dilated Convolution) 方法来优化网络中的卷积操作。这种方法能够动态调整不同频率成分下的膨胀率,从而更好地处理图像中的高低频信息。
#### 动态调节空洞率机制
在应用 FADC 改进时,对于高频区域(如车辆边缘、行人轮廓),应设置较低的空洞率以维持较高的分辨率和细节捕捉能力;而对于较为平坦的低频区,则增大空洞率以便扩展感受野范围[^2]。这种策略有助于提高模型对复杂场景的理解力以及目标检测精度。
#### 集成至 BasicBlock 结构内
具体实现上,在 ResNet18 中每一个 `BasicBlock` 卷积单元里引入基于 DCNV2-Dynamic 变形卷积的思想,使得每一层都能根据输入数据特点灵活改变自身的形态参数,进而达到更优的效果[^1]。以下是 Python 实现的一个简化版本:
```python
import torch.nn as nn
class FrequencyAdaptiveConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
super(FrequencyAdaptiveConv, self).__init__()
# 定义基础卷积层
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding)
# 初始化其他组件...
def forward(self, x):
# 计算当前批次样本对应的最优空洞率分布
# 应用计算得到的最佳配置执行前向传播过程...
return output_x
class ImprovedBasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(ImprovedBasicBlock, self).__init__()
# 替换原有标准卷积为自适应频率感知型
self.freq_conv1 = FrequencyAdaptiveConv(inplanes, planes, stride=stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.freq_conv2 = FrequencyAdaptiveConv(planes, planes * self.expansion)
self.bn2 = nn.BatchNorm2d(planes * self.expansion)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.freq_conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.freq_conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
```
上述代码展示了如何构建一个新的卷积模块 (`FrequencyAdaptiveConv`) 来替代传统的固定参数卷积,并将其集成到改良后的 `ImprovedBasicBlock` 当中。需要注意的是实际部署过程中还需要考虑更多因素比如训练稳定性等问题。
Vgg加FPN和ResNet加FPN后 在分类前融合 代码
以下是使用PyTorch实现VGG和ResNet与FPN的融合的代码:
``` python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import vgg16, resnet50
class VGG_FPN(nn.Module):
def __init__(self, num_classes=1000):
super(VGG_FPN, self).__init__()
vgg = vgg16(pretrained=True)
self.features = vgg.features
self.fpn_layers = nn.Sequential(
nn.Conv2d(512, 256, kernel_size=1, stride=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 512, kernel_size=1, stride=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 1024, kernel_size=1, stride=1),
nn.BatchNorm2d(1024),
nn.ReLU(inplace=True),
nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(1024),
nn.ReLU(inplace=True)
)
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(1024 * 7 * 7, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes)
)
def forward(self, x):
x = self.features(x)
c3, c4, c5 = x.size()
p5 = self.fpn_layers(x)
p4 = F.upsample(p5, size=(c4), mode="nearest") + self.fpn_layers(x)
p3 = F.upsample(p4, size=(c3), mode="nearest") + self.fpn_layers(x)
x = F.adaptive_avg_pool2d(p3, output_size=(1, 1))
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
class ResNet_FPN(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet_FPN, self).__init__()
resnet = resnet50(pretrained=True)
self.conv1 = resnet.conv1
self.bn1 = resnet.bn1
self.relu = resnet.relu
self.maxpool = resnet.maxpool
self.layer1 = resnet.layer1
self.layer2 = resnet.layer2
self.layer3 = resnet.layer3
self.layer4 = resnet.layer4
self.fpn_layers = nn.Sequential(
nn.Conv2d(2048, 256, kernel_size=1, stride=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 512, kernel_size=1, stride=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 1024, kernel_size=1, stride=1),
nn.BatchNorm2d(1024),
nn.ReLU(inplace=True),
nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(1024),
nn.ReLU(inplace=True)
)
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.fc = nn.Linear(1024 * 7 * 7, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
c2 = self.layer1(x)
c3 = self.layer2(c2)
c4 = self.layer3(c3)
c5 = self.layer4(c4)
p5 = self.fpn_layers(c5)
p4 = F.upsample(p5, size=(c4.size()[2], c4.size()[3]), mode="nearest") + self.fpn_layers(c4)
p3 = F.upsample(p4, size=(c3.size()[2], c3.size()[3]), mode="nearest") + self.fpn_layers(c3)
x = F.adaptive_avg_pool2d(p3, output_size=(1, 1))
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
以上代码实现了VGG和ResNet与FPN的融合,其中VGG_FPN和ResNet_FPN分别代表融合后的模型。模型分为特征提取层和分类层两部分,特征提取层通过VGG或ResNet提取特征,然后再使用FPN将多层特征融合。分类层则将融合后的特征作为输入,输出分类结果。注意,这里使用了nn.Sequential()将多个卷积层组成了一个整体。
阅读全文
相关推荐















