class MyNet(nn.Module): def init(self): super(MyNet, self).init() self.vgg16 = vgg16(pretrained=True) self.resnet18 = resnet18(pretrained=True) self.vgg16.classifier = nn.Identity() self.resnet18.fc = nn.Identity() self.fc = nn.Linear(25600, 2) def forward(self, x): x1 = self.vgg16(x) x2 = self.resnet18(x) x1 = x1.view(x1.size(0), -1) x2 = x2.view(x2.size(0), -1) x = torch.cat((x1, x2), dim=1) x = self.fc(x) return x 将以上代码加入CBAM注意力机制
时间: 2023-10-20 22:15:51 浏览: 183
Pytorch C++ Library.zip
可以按照以下方式将CBAM注意力机制加入到MyNet模型中:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
# 导入CBAM注意力机制的模块
from cbam import CBAM
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
# 加载预训练的vgg16和resnet18模型
self.vgg16 = torch.hub.load('pytorch/vision:v0.6.0', 'vgg16', pretrained=True)
self.resnet18 = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True)
# 将vgg16和resnet18的全连接层替换成Identity层
self.vgg16.classifier = nn.Identity()
self.resnet18.fc = nn.Identity()
# 添加CBAM注意力机制
self.cbam1 = CBAM(512)
self.cbam2 = CBAM(512)
# 定义全连接层
self.fc = nn.Linear(25600, 2)
def forward(self, x):
# 使用vgg16和resnet18提取特征,并进行CBAM注意力机制的处理
x1 = self.vgg16.features(x)
x2 = self.resnet18.conv1(x)
x2 = self.resnet18.bn1(x2)
x2 = self.resnet18.relu(x2)
x2 = self.resnet18.maxpool(x2)
x2 = self.resnet18.layer1(x2)
x2 = self.resnet18.layer2(x2)
x2 = self.resnet18.layer3(x2)
x2 = self.resnet18.layer4(x2)
x2 = self.cbam1(x2)
x2 = F.adaptive_avg_pool2d(x2, (1, 1))
x2 = x2.view(x2.size(0), -1)
x1 = x1.view(x1.size(0), -1)
x1 = self.cbam2(x1)
x1 = x1.view(x1.size(0), -1)
x = torch.cat((x1, x2), dim=1)
# 使用全连接层进行分类
x = self.fc(x)
return x
```
这里我们使用了一个名为CBAM的注意力机制模块,它可以对输入的特征图进行通道注意力和空间注意力处理,从而提高模型的性能。我们将CBAM模块添加到了vgg16和resnet18模型的输出上,并将输出结果进行拼接,然后再通过一个全连接层将其映射到2维输出。需要注意的是,这里我们使用了pytorch提供的预训练模型,所以需要先安装pytorch。
阅读全文