请帮我编写下面网络的前向传播layers.append(nn.ReLU(inplace=True))
时间: 2024-02-16 11:03:26 浏览: 68
好的,这是一个简单的神经网络的前向传播代码,包括两个全连接层和一个ReLU激活函数:
```python
import torch.nn as nn
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.fc1 = nn.Linear(100, 50)
self.fc2 = nn.Linear(50, 10)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
return x
```
其中,`nn.Linear` 是全连接层,输入参数是输入和输出的神经元数量,`nn.ReLU` 是 ReLU 激活函数,`inplace=True` 表示该操作是原地执行,不会增加内存消耗。在 `forward` 方法中,我们按照全连接层 -> ReLU -> 全连接层 -> ReLU 的顺序组合了这些层。
相关问题
class DnCNN(nn.Module): def init(self, channels, num_of_layers=17): super(DnCNN, self).init() kernel_size = 3 padding = 1 features = 64 layers = [] layers.append(nn.Conv2d(in_channels=channels, out_channels=features, kernel_size=kernel_size, padding=padding, bias=False)) layers.append(nn.ReLU(inplace=True)) for _ in range(num_of_layers-2): layers.append(nn.Conv2d(in_channels=features, out_channels=features, kernel_size=kernel_size, padding=padding, bias=False)) layers.append(nn.BatchNorm2d(features)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.Conv2d(in_channels=features, out_channels=channels, kernel_size=kernel_size, padding=padding, bias=False)) self.dncnn = nn.Sequential(*layers) def forward(self, x): out = self.dncnn(x) return out怎么改为训练集输出[16,3,50,50],评估集输出[1,3,256,256]
可以将 forward 函数中的输出维度改为所需的维度:
```
def forward(self, x):
if x.size() == torch.Size([16, 3, 50, 50]): # 训练集
out = self.dncnn(x)
elif x.size() == torch.Size([1, 3, 256, 256]): # 评估集
out = self.dncnn(x)
else:
raise ValueError(f"Invalid input size: {x.size()}")
return out
```
这样,当输入为训练集时,输出为 `[16, 3, 50, 50]`,当输入为评估集时,输出为 `[1, 3, 256, 256]`。如果输入大小不匹配,会抛出 ValueError 异常。
class DnCNN(nn.Module): def init(self, channels, num_of_layers=17): super(DnCNN, self).init() kernel_size = 3 padding = 1 features = 64 layers = [] layers.append(nn.Conv2d(nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1, bias=False))) layers.append(nn.ReLU(inplace=True)) for _ in range(num_of_layers-2): layers.append(nn.Conv2d(nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1, bias=False))) layers.append(nn.BatchNorm2d(features)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.Conv2d(nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1, bias=False))) self.dncnn = nn.Sequential(*layers) def forward(self, x): out = self.dncnn(x) return out怎么改为训练集输出[16,3,50,50],评估集输出[1,3,256,256]
你需要修改这个模型的输入尺寸和输出尺寸,以适应你的训练集和评估集。
首先,你需要将输入尺寸修改为[16,3,50,50],这可以通过将第一层卷积层的输入通道数从3改为16来实现。
其次,你需要将输出尺寸修改为[16,3,50,50]和[1,3,256,256],这可以通过在模型的最后添加一个卷积层来实现,该层的输出通道数为3。
修改后的代码如下所示:
```
class DnCNN(nn.Module):
def __init__(self, channels, num_of_layers=17):
super(DnCNN, self).__init__()
kernel_size = 3
padding = 1
features = 64
layers = []
layers.append(nn.Conv2d(in_channels=16, out_channels=64, kernel_size=3, padding=1, bias=False))
layers.append(nn.ReLU(inplace=True))
for _ in range(num_of_layers-2):
layers.append(nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1, bias=False))
layers.append(nn.BatchNorm2d(features))
layers.append(nn.ReLU(inplace=True))
layers.append(nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1, bias=False))
layers.append(nn.Conv2d(in_channels=64, out_channels=3, kernel_size=3, padding=1, bias=False))
self.dncnn = nn.Sequential(*layers)
def forward(self, x):
out = self.dncnn(x)
return out
```
注意,这只是一个例子,具体的修改取决于你的具体数据集。你需要根据你的数据集的输入和输出尺寸来修改模型的结构。
阅读全文