def _make_deconv_layer(self, num_layers, num_filters, num_kernels): layers = [] for i in range(num_layers): kernel = num_kernels[i] planes = num_filters[i] layers.append( nn.ConvTranspose2d( in_channels=self.inplanes, out_channels=planes, kernel_size=kernel, stride=2, padding=1, output_padding=0, bias=self.deconv_with_bias)) layers.append(nn.BatchNorm2d(planes, momentum=self.bn_momentum)) layers.append(nn.ReLU(inplace=True)) self.inplanes = planes return nn.Sequential(*layers)
时间: 2024-02-15 20:28:54 浏览: 115
这是一个用于构建反卷积层的函数,输入参数包括反卷积层数(num_layers)、每一层的输出通道数(num_filters)和卷积核大小(num_kernels)。该函数通过循环生成反卷积层,并将其添加到一个列表(layers)中,最终通过 nn.Sequential 将所有层连接在一起并返回。其中每一层包括一个反卷积层(nn.ConvTranspose2d)、一个批量归一化层(nn.BatchNorm2d)和一个激活函数层(nn.ReLU)。
相关问题
这段代码怎么拆分成单独的层class resnet50_Decoder(nn.Module): def __init__(self, inplanes, bn_momentum=0.1): super(resnet50_Decoder, self).__init__() self.bn_momentum = bn_momentum self.inplanes = inplanes self.deconv_with_bias = False #----------------------------------------------------------# # 16,16,2048 -> 32,32,256 -> 64,64,128 -> 128,128,64 # 利用ConvTranspose2d进行上采样。 # 每次特征层的宽高变为原来的两倍。 #----------------------------------------------------------# self.deconv_layers = self._make_deconv_layer( num_layers=3, num_filters=[256, 128, 64], num_kernels=[4, 4, 4], ) def _make_deconv_layer(self, num_layers, num_filters, num_kernels): layers = [] for i in range(num_layers): kernel = num_kernels[i] planes = num_filters[i] layers.append( nn.ConvTranspose2d( in_channels=self.inplanes, out_channels=planes, kernel_size=kernel, stride=2, padding=1, output_padding=0, bias=self.deconv_with_bias)) layers.append(nn.BatchNorm2d(planes, momentum=self.bn_momentum)) layers.append(nn.ReLU(inplace=True)) self.inplanes = planes return nn.Sequential(*layers) def forward(self, x): return self.deconv_layers(x)
可以将这段代码拆分成以下两个类:
1. DeconvLayer(nn.Module):此类用于实现ConvTranspose2d、BatchNorm2d和ReLU激活函数的组合,即一层上采样层。其构造函数需要传入in_channels、out_channels、kernel_size、stride、padding、output_padding和bn_momentum等参数。
2. ResNet50Decoder(nn.Module):此类用于实现ResNet50的解码器部分,即利用DeconvLayer对ResNet50的特征图进行上采样,得到最终的输出结果。其构造函数需要传入inplanes和bn_momentum等参数。
以下是代码示例:
```python
class DeconvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, output_padding, bn_momentum=0.1, bias=False):
super(DeconvLayer, self).__init__()
self.conv_transpose = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding, output_padding, bias=bias)
self.bn = nn.BatchNorm2d(out_channels, momentum=bn_momentum)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv_transpose(x)
x = self.bn(x)
x = self.relu(x)
return x
class ResNet50Decoder(nn.Module):
def __init__(self, inplanes, bn_momentum=0.1):
super(ResNet50Decoder, self).__init__()
self.bn_momentum = bn_momentum
self.inplanes = inplanes
self.deconv_with_bias = False
self.deconv_layers = self._make_deconv_layer(
num_layers=3,
num_filters=[256, 128, 64],
num_kernels=[4, 4, 4],
)
def _make_deconv_layer(self, num_layers, num_filters, num_kernels):
layers = []
for i in range(num_layers):
kernel = num_kernels[i]
planes = num_filters[i]
layers.append(DeconvLayer(
in_channels=self.inplanes,
out_channels=planes,
kernel_size=kernel,
stride=2,
padding=1,
output_padding=0,
bn_momentum=self.bn_momentum,
bias=self.deconv_with_bias
))
self.inplanes = planes
return nn.Sequential(*layers)
def forward(self, x):
return self.deconv_layers(x)
```
解释一下这段代码def __init__(self, feature_scale=4, n_classes=21, is_deconv=True, in_channels=3, is_batchnorm=True):super(unet_3D_dv_semi, self).__init__() self.is_deconv = is_deconv self.in_channels = in_channels self.is_batchnorm = is_batchnorm self.feature_scale = feature_scale filters = [64, 128, 256, 512, 1024] filters = [int(x / self.feature_scale) for x in filters]
这段代码定义了`unet_3D_dv_semi`类的初始化方法(`__init__`)。初始化方法在创建类的实例时被调用,用于设置类的属性和进行一些初始化操作。
该初始化方法接受一些参数,包括`feature_scale`(特征缩放比例,默认为4)、`n_classes`(类别数量,默认为21)、`is_deconv`(是否使用反卷积层,默认为True)、`in_channels`(输入通道数,默认为3)、`is_batchnorm`(是否使用批归一化层,默认为True)。
在初始化方法中,首先调用父类`nn.Module`的初始化方法,以确保正确地初始化基类的属性。
然后,将传入的参数赋值给类的属性,例如`is_deconv`、`in_channels`、`is_batchnorm`和`feature_scale`。
接下来,创建了一个名为`filters`的列表,其中包含了一系列的数字。这些数字表示用于构建Unet网络的不同层的滤波器数量。通过将这些滤波器数量除以特征缩放比例,可以根据需要调整网络的容量。
最后,返回了初始化后的类实例。
阅读全文