for name, m in self.deconv_layers.named_modules(): if isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0)
时间: 2024-02-14 08:27:44 浏览: 102
这段代码是用来初始化神经网络中的BatchNormalization层的权重和偏置项的。BatchNormalization是一种用于加速神经网络训练和提高模型性能的技术。在这段代码中,它遍历了self.deconv_layers中的所有模块,并检查是否是BatchNormalization层。如果是的话,就将权重设置为1,偏置项设置为0,以进行初始化操作。这样做的目的是为了确保网络开始时具有合适的初始状态,以提高训练的效果。
相关问题
def init_weights(self, num_layers, pretrained=True): if pretrained: # print('=> init resnet deconv weights from normal distribution') for _, m in self.deconv_layers.named_modules(): if isinstance(m, nn.ConvTranspose2d): # print('=> init {}.weight as normal(0, 0.001)'.format(name)) # print('=> init {}.bias as 0'.format(name)) nn.init.normal_(m.weight, std=0.001) if self.deconv_with_bias: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): # print('=> init {}.weight as 1'.format(name)) # print('=> init {}.bias as 0'.format(name)) nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # print('=> init final conv weights from normal distribution') for head in self.heads: final_layer = self.__getattr__(head) for i, m in enumerate(final_layer.modules()): if isinstance(m, nn.Conv2d): # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') # print('=> init {}.weight as normal(0, 0.001)'.format(name)) # print('=> init {}.bias as 0'.format(name)) if m.weight.shape[0] == self.heads[head]: if 'hm' in head: nn.init.constant_(m.bias, -2.19) else: nn.init.normal_(m.weight, std=0.001) nn.init.constant_(m.bias, 0) #pretrained_state_dict = torch.load(pretrained) url = model_urls['resnet{}'.format(num_layers)] pretrained_state_dict = model_zoo.load_url(url) print('=> loading pretrained model {}'.format(url)) self.load_state_dict(pretrained_state_dict, strict=False) else: print('=> imagenet pretrained model dose not exist') print('=> please download it first') raise ValueError('imagenet pretrained model does not exist')
这段代码是一个神经网络模型初始化权重的函数。根据输入的参数,函数会根据预训练的权重初始化模型的卷积层和批归一化层的权重。如果pretrained参数为True,函数还会加载预训练模型的权重。
具体地,函数会遍历模型的deconv_layers,并对其中的卷积层和批归一化层进行初始化。对于卷积层,权重会从均值为0、标准差为0.001的正态分布中采样得到,偏置会被初始化为0。对于批归一化层,权重会被初始化为1,偏置会被初始化为0。
接着,函数会遍历模型的heads,并对每个head中的最后一层卷积层进行初始化。初始化方式与上述相同,不过对于特定的head(如包含'hm'的head),偏置会被初始化为-2.19。
最后,如果pretrained为True,函数会加载预训练模型的权重。预训练模型的URL由参数num_layers指定。
如果pretrained为False,则会打印错误信息并抛出ValueError异常。
这段代码怎么拆分成单独的层class resnet50_Decoder(nn.Module): def __init__(self, inplanes, bn_momentum=0.1): super(resnet50_Decoder, self).__init__() self.bn_momentum = bn_momentum self.inplanes = inplanes self.deconv_with_bias = False #----------------------------------------------------------# # 16,16,2048 -> 32,32,256 -> 64,64,128 -> 128,128,64 # 利用ConvTranspose2d进行上采样。 # 每次特征层的宽高变为原来的两倍。 #----------------------------------------------------------# self.deconv_layers = self._make_deconv_layer( num_layers=3, num_filters=[256, 128, 64], num_kernels=[4, 4, 4], ) def _make_deconv_layer(self, num_layers, num_filters, num_kernels): layers = [] for i in range(num_layers): kernel = num_kernels[i] planes = num_filters[i] layers.append( nn.ConvTranspose2d( in_channels=self.inplanes, out_channels=planes, kernel_size=kernel, stride=2, padding=1, output_padding=0, bias=self.deconv_with_bias)) layers.append(nn.BatchNorm2d(planes, momentum=self.bn_momentum)) layers.append(nn.ReLU(inplace=True)) self.inplanes = planes return nn.Sequential(*layers) def forward(self, x): return self.deconv_layers(x)
可以将这段代码拆分成以下两个类:
1. DeconvLayer(nn.Module):此类用于实现ConvTranspose2d、BatchNorm2d和ReLU激活函数的组合,即一层上采样层。其构造函数需要传入in_channels、out_channels、kernel_size、stride、padding、output_padding和bn_momentum等参数。
2. ResNet50Decoder(nn.Module):此类用于实现ResNet50的解码器部分,即利用DeconvLayer对ResNet50的特征图进行上采样,得到最终的输出结果。其构造函数需要传入inplanes和bn_momentum等参数。
以下是代码示例:
```python
class DeconvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, output_padding, bn_momentum=0.1, bias=False):
super(DeconvLayer, self).__init__()
self.conv_transpose = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding, output_padding, bias=bias)
self.bn = nn.BatchNorm2d(out_channels, momentum=bn_momentum)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv_transpose(x)
x = self.bn(x)
x = self.relu(x)
return x
class ResNet50Decoder(nn.Module):
def __init__(self, inplanes, bn_momentum=0.1):
super(ResNet50Decoder, self).__init__()
self.bn_momentum = bn_momentum
self.inplanes = inplanes
self.deconv_with_bias = False
self.deconv_layers = self._make_deconv_layer(
num_layers=3,
num_filters=[256, 128, 64],
num_kernels=[4, 4, 4],
)
def _make_deconv_layer(self, num_layers, num_filters, num_kernels):
layers = []
for i in range(num_layers):
kernel = num_kernels[i]
planes = num_filters[i]
layers.append(DeconvLayer(
in_channels=self.inplanes,
out_channels=planes,
kernel_size=kernel,
stride=2,
padding=1,
output_padding=0,
bn_momentum=self.bn_momentum,
bias=self.deconv_with_bias
))
self.inplanes = planes
return nn.Sequential(*layers)
def forward(self, x):
return self.deconv_layers(x)
```
阅读全文