请解释以下代码:class mynet(nn.Module): def __init__(self): super(mynet, self).__init__() # 添加神经元以及激活函数,输入是4个维度,输出是一个维度 self.fc = nn.Sequential( nn.Linear(29, 32), nn.LeakyReLU(), nn.Linear(32, 128), nn.LeakyReLU(), nn.Linear(128,512), nn.LeakyReLU(), nn.Linear(512, 1), ) def forward(self, inputs): outputs = self.fc(inputs) return outputs
时间: 2024-02-15 09:28:37 浏览: 81
这段代码定义了一个名为`mynet`的神经网络模型,继承自`nn.Module`。在`__init__`函数中,定义了一个由4个线性层和3个LeakyReLU激活函数组成的神经网络,输入维度为29,输出维度为1。`nn.Sequential`表示按照顺序依次执行网络层,其中`nn.Linear`表示线性层,输入维度为上一层输出维度,输出维度为该层的第一个参数。`nn.LeakyReLU`表示使用LeakyReLU激活函数。在`forward`函数中,将输入`inputs`传给网络层进行计算,得到输出`outputs`,并返回。
相关问题
class MyNet(nn.Module): def __init__(self): super(MyNet, self).__init__() self.vgg16 = vgg16(pretrained=True) self.resnet18 = resnet18(pretrained=True) self.vgg16.classifier = nn.Identity() self.resnet18.fc = nn.Identity() self.fc = nn.Linear(25600, 2) def forward(self, x): x1 = self.vgg16(x) x2 = self.resnet18(x) x1 = x1.view(x1.size(0), -1) x2 = x2.view(x2.size(0), -1) x = torch.cat((x1, x2), dim=1) x = self.fc(x) return x 将以上代码加入DANet注意力机制
可以将 DAnet 注意力机制加入到 MyNet 的 forward 函数中,如下所示:
```python
import torch
import torch.nn as nn
class DAnet(nn.Module):
def __init__(self, in_channels, out_channels, reduction=16):
super(DAnet, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv1 = nn.Conv2d(in_channels, in_channels // reduction, kernel_size=1, stride=1, padding=0)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(in_channels // reduction, out_channels, kernel_size=1, stride=1, padding=0)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x)
y = self.conv1(y)
y = self.relu(y)
y = self.conv2(y)
y = self.sigmoid(y)
return x * y.expand_as(x)
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.vgg16 = vgg16(pretrained=True)
self.resnet18 = resnet18(pretrained=True)
self.vgg16.classifier = nn.Identity()
self.resnet18.fc = nn.Identity()
self.danet1 = DAnet(512, 512)
self.danet2 = DAnet(512, 512)
self.fc = nn.Linear(25600, 2)
def forward(self, x):
x1 = self.vgg16.features(x)
x1 = self.danet1(x1)
x1 = self.vgg16.avgpool(x1)
x1 = torch.flatten(x1, 1)
x2 = self.resnet18.conv1(x)
x2 = self.resnet18.bn1(x2)
x2 = self.resnet18.relu(x2)
x2 = self.resnet18.maxpool(x2)
x2 = self.resnet18.layer1(x2)
x2 = self.resnet18.layer2(x2)
x2 = self.resnet18.layer3(x2)
x2 = self.resnet18.layer4(x2)
x2 = self.danet2(x2)
x2 = self.resnet18.avgpool(x2)
x2 = torch.flatten(x2, 1)
x = torch.cat((x1, x2), dim=1)
x = self.fc(x)
return x
```
在 forward 函数中,我们首先对 VGG16 和 ResNet18 的特征提取部分进行计算,然后将 VGG16 的特征图 x1 和 ResNet18 的特征图 x2 分别输入到两个 DAnet 注意力机制中进行加权,最后将加权后的两个特征图拼接在一起,并通过全连接层进行分类。
class MyNet(nn.Module): def init(self): super(MyNet, self).init() self.vgg16 = vgg16(pretrained=True) self.resnet18 = resnet18(pretrained=True) self.vgg16.classifier = nn.Identity() self.resnet18.fc = nn.Identity() self.fc = nn.Linear(25600, 2) def forward(self, x): x1 = self.vgg16(x) x2 = self.resnet18(x) x1 = x1.view(x1.size(0), -1) x2 = x2.view(x2.size(0), -1) x = torch.cat((x1, x2), dim=1) x = self.fc(x) return x 将以上代码加入CBAM注意力机制
可以按照以下方式将CBAM注意力机制加入到MyNet模型中:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
# 导入CBAM注意力机制的模块
from cbam import CBAM
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
# 加载预训练的vgg16和resnet18模型
self.vgg16 = torch.hub.load('pytorch/vision:v0.6.0', 'vgg16', pretrained=True)
self.resnet18 = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True)
# 将vgg16和resnet18的全连接层替换成Identity层
self.vgg16.classifier = nn.Identity()
self.resnet18.fc = nn.Identity()
# 添加CBAM注意力机制
self.cbam1 = CBAM(512)
self.cbam2 = CBAM(512)
# 定义全连接层
self.fc = nn.Linear(25600, 2)
def forward(self, x):
# 使用vgg16和resnet18提取特征,并进行CBAM注意力机制的处理
x1 = self.vgg16.features(x)
x2 = self.resnet18.conv1(x)
x2 = self.resnet18.bn1(x2)
x2 = self.resnet18.relu(x2)
x2 = self.resnet18.maxpool(x2)
x2 = self.resnet18.layer1(x2)
x2 = self.resnet18.layer2(x2)
x2 = self.resnet18.layer3(x2)
x2 = self.resnet18.layer4(x2)
x2 = self.cbam1(x2)
x2 = F.adaptive_avg_pool2d(x2, (1, 1))
x2 = x2.view(x2.size(0), -1)
x1 = x1.view(x1.size(0), -1)
x1 = self.cbam2(x1)
x1 = x1.view(x1.size(0), -1)
x = torch.cat((x1, x2), dim=1)
# 使用全连接层进行分类
x = self.fc(x)
return x
```
这里我们使用了一个名为CBAM的注意力机制模块,它可以对输入的特征图进行通道注意力和空间注意力处理,从而提高模型的性能。我们将CBAM模块添加到了vgg16和resnet18模型的输出上,并将输出结果进行拼接,然后再通过一个全连接层将其映射到2维输出。需要注意的是,这里我们使用了pytorch提供的预训练模型,所以需要先安装pytorch。
阅读全文