x = self.layer1(x) x = self.layer2(x) x = x.view(-1, 64*7*7)写出forward里加入dropout层的变化
时间: 2024-05-03 22:16:37 浏览: 107
基于深度学习的近红外光谱数据回归分析模型.zip
5星 · 资源好评率100%
可以在每个层的输出之后加上一个dropout层,在训练过程中随机失活一部分神经元,以减少过拟合的风险。修改后的代码如下:
```python
import torch.nn as nn
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.dropout1 = nn.Dropout(p=0.2) # 加入dropout层
self.layer2 = nn.Sequential(
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.dropout2 = nn.Dropout(p=0.2) # 加入dropout层
self.fc = nn.Sequential(
nn.Linear(in_features=64*7*7, out_features=1024),
nn.ReLU(),
nn.Linear(in_features=1024, out_features=10))
def forward(self, x):
x = self.layer1(x)
x = self.dropout1(x) # 加入dropout层
x = self.layer2(x)
x = self.dropout2(x) # 加入dropout层
x = x.view(-1, 64*7*7)
x = self.fc(x)
return x
```
在实际使用中,我们可以根据数据集和模型的表现调整dropout层的概率,以达到更好的效果。
阅读全文