路径规划matlab代码
时间: 2024-01-26 17:03:33 浏览: 77
以下是两种基于Matlab的路径规划算法的代码示例:
1. 遗传算法路径规划代码示例:
```matlab
% 遗传算法路径规划
function [bestPath, bestFitness] = geneticAlgorithmPathPlanning(map, startPoint, endPoint, populationSize, maxGenerations)
% 初始化种群
population = initializePopulation(map, startPoint, endPoint, populationSize);
% 进化过程
for generation = 1:maxGenerations
% 计算适应度
fitness = calculateFitness(population, map);
% 选择父代
parents = selection(population, fitness);
% 交叉产生子代
offspring = crossover(parents);
% 变异
offspring = mutation(offspring);
% 合并父代和子代
population = [parents; offspring];
% 选择下一代种群
population = selection(population, fitness);
end
% 获取最佳路径和适应度
bestFitness = min(fitness);
bestPathIndex = find(fitness == bestFitness, 1);
bestPath = population(bestPathIndex, :);
end
% 初始化种群
function population = initializePopulation(map, startPoint, endPoint, populationSize)
% 初始化种群矩阵
population = zeros(populationSize, size(map, 1));
for i = 1:populationSize
% 随机生成路径
path = generateRandomPath(map, startPoint, endPoint);
% 将路径添加到种群中
population(i, :) = path;
end
end
% 计算适应度
function fitness = calculateFitness(population, map)
fitness = zeros(size(population, 1), 1);
for i = 1:size(population, 1)
% 计算路径长度作为适应度
path = population(i, :);
fitness(i) = calculatePathLength(path, map);
end
end
% 选择父代
function parents = selection(population, fitness)
% 根据适应度进行轮盘赌选择
totalFitness = sum(fitness);
probabilities = fitness / totalFitness;
cumulativeProbabilities = cumsum(probabilities);
parents = zeros(size(population));
for i = 1:size(population, 1)
% 选择父代
r = rand();
parentIndex = find(cumulativeProbabilities >= r, 1);
parents(i, :) = population(parentIndex, :);
end
end
% 交叉产生子代
function offspring = crossover(parents)
offspring = zeros(size(parents));
for i = 1:size(parents, 1)
% 随机选择两个父代
parent1 = parents(randperm(size(parents, 1), 1), :);
parent2 = parents(randperm(size(parents, 1), 1), :);
% 交叉操作
crossoverPoint = randi([2, size(parents, 2) - 1]);
offspring(i, :) = [parent1(1:crossoverPoint), parent2(crossoverPoint+1:end)];
end
end
% 变异
function offspring = mutation(offspring)
mutationRate = 0.01;
for i = 1:size(offspring, 1)
% 随机选择一个基因进行变异
geneIndex = randi([2, size(offspring, 2) - 1]);
% 变异操作
offspring(i, geneIndex) = randi([1, size(offspring, 2)]);
end
end
% 计算路径长度
function length = calculatePathLength(path, map)
length = 0;
for i = 1:length(path)-1
% 计算两个节点之间的距离
node1 = path(i);
node2 = path(i+1);
length = length + map(node1, node2);
end
end
% 生成随机路径
function path = generateRandomPath(map, startPoint, endPoint)
path = [startPoint];
while path(end) ~= endPoint
% 随机选择下一个节点
nextNode = randi([1, size(map, 1)]);
% 确保下一个节点不在路径中且与当前节点相连
if ~ismember(nextNode, path) && map(path(end), nextNode) > 0
path = [path, nextNode];
end
end
end
```
2. 粒子群算法路径规划代码示例:
```matlab
% 粒子群算法路径规划
function [bestPath, bestFitness] = particleSwarmAlgorithmPathPlanning(map, startPoint, endPoint, populationSize, maxGenerations)
% 初始化种群
population = initializePopulation(map, startPoint, endPoint, populationSize);
% 初始化速度
velocity = initializeVelocity(populationSize, size(map, 1));
% 初始化个体最佳位置和适应度
individualBestPositions = population;
individualBestFitnesses = calculateFitness(population, map);
% 初始化全局最佳位置和适应度
[globalBestFitness, globalBestIndex] = min(individualBestFitnesses);
globalBestPosition = individualBestPositions(globalBestIndex, :);
% 进化过程
for generation = 1:maxGenerations
% 更新速度和位置
velocity = updateVelocity(velocity, population, individualBestPositions, globalBestPosition);
population = updatePosition(population, velocity);
% 计算适应度
fitness = calculateFitness(population, map);
% 更新个体最佳位置和适应度
for i = 1:size(population, 1)
if fitness(i) < individualBestFitnesses(i)
individualBestPositions(i, :) = population(i, :);
individualBestFitnesses(i) = fitness(i);
end
end
% 更新全局最佳位置和适应度
[currentBestFitness, currentBestIndex] = min(individualBestFitnesses);
if currentBestFitness < globalBestFitness
globalBestFitness = currentBestFitness;
globalBestPosition = individualBestPositions(currentBestIndex, :);
end
end
% 获取最佳路径和适应度
bestFitness = globalBestFitness;
bestPath = globalBestPosition;
end
% 初始化速度
function velocity = initializeVelocity(populationSize, pathLength)
velocity = zeros(populationSize, pathLength);
end
% 更新速度
function velocity = updateVelocity(velocity, population, individualBestPositions, globalBestPosition)
inertiaWeight = 0.9;
cognitiveWeight = 2;
socialWeight = 2;
for i = 1:size(population, 1)
% 更新速度
velocity(i, :) = inertiaWeight * velocity(i, :) ...
+ cognitiveWeight * rand() * (individualBestPositions(i, :) - population(i, :)) ...
+ socialWeight * rand() * (globalBestPosition - population(i, :));
end
end
% 更新位置
function population = updatePosition(population, velocity)
population = population + velocity;
end
```
阅读全文