bp神经网络预测python代码

时间: 2024-12-31 19:46:55 浏览: 20
### BP神经网络 Python 实现预测示例代码 为了展示如何使用Python实现BP神经网络并进行预测,下面提供了一个完整的代码实例。此代码实现了具有单个隐藏层的前馈神经网络,并展示了数据预处理、模型构建、训练以及最终的预测过程。 #### 数据准备与初始化 首先导入必要的库,并设置超参数: ```python import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler # 定义一些神经网络的参数[^4] num_iterations = 10000 # 迭代次数 lr = 0.01 # 学习率 train_batch_size = 32 # 训练批次大小 early_stopping_patience = 5 # 提前停止耐心度 ``` #### 构建BP神经网络类 接着定义一个简单的BP神经网络类,该类包含了正向传播和反向传播的方法: ```python class SimpleNN: def __init__(self, input_dim, hidden_units=8, output_dim=1): self.W1 = np.random.randn(input_dim, hidden_units) self.b1 = np.zeros((1, hidden_units)) self.W2 = np.random.randn(hidden_units, output_dim) self.b2 = np.zeros((1, output_dim)) def sigmoid(self, z): return 1 / (1 + np.exp(-z)) def forward(self, X): Z1 = np.dot(X, self.W1) + self.b1 A1 = self.sigmoid(Z1) Z2 = np.dot(A1, self.W2) + self.b2 pred = self.sigmoid(Z2) return {'Z1': Z1, 'A1': A1, 'Z2': Z2, 'pred': pred} def backward(self, cache, X, y): m = X.shape[0] dZ2 = cache['pred'] - y dW2 = np.dot(cache['A1'].T, dZ2) / m db2 = np.sum(dZ2, axis=0, keepdims=True) / m dA1 = np.dot(dZ2, self.W2.T) dZ1 = dA1 * cache['A1'] * (1-cache['A1']) dW1 = np.dot(X.T, dZ1) / m db1 = np.sum(dZ1, axis=0, keepdims=True) / m grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2} return grads def update_parameters(self, grads, learning_rate=0.01): self.W1 -= learning_rate * grads["dW1"] self.b1 -= learning_rate * grads["db1"] self.W2 -= learning_rate * grads["dW2"] self.b2 -= learning_rate * grads["db2"] def compute_loss(self, y_true, y_pred): loss = -(y_true*np.log(y_pred)+(1-y_true)*np.log(1-y_pred)).mean() return loss ``` #### 加载与预处理数据集 假设有一个二分类问题的数据集`X_data`, `y_labels`: ```python scaler = StandardScaler() def preprocess_data(X_raw, y_raw): X_scaled = scaler.fit_transform(X_raw) # 将标签转换成one-hot编码形式(如果需要) y_onehot = (y_raw[:, None] == np.unique(y_raw).reshape([1, -1])).astype(int) return X_scaled, y_onehot.flatten() if len(np.unique(y_raw)) == 2 else y_onehot X_train, X_val, y_train, y_val = train_test_split( X_data, y_labels, test_size=0.2, random_state=42) X_train_processed, y_train_processed = preprocess_data(X_train, y_train) X_val_processed, _ = preprocess_data(X_val, y_val) ``` #### 模型训练循环 最后,在主程序中调用上述组件完成整个流程: ```python nn_model = SimpleNN(input_dim=X_train_processed.shape[1], hidden_units=8, output_dim=y_train_processed.shape[-1]) for i in range(num_iterations): indices = np.random.choice(len(X_train_processed), size=train_batch_size, replace=False) batch_X = X_train_processed[indices] batch_y = y_train_processed[indices][:,None] caches = nn_model.forward(batch_X) preds = caches['pred'] cost = nn_model.compute_loss(batch_y, preds) gradients = nn_model.backward(caches, batch_X, batch_y) nn_model.update_parameters(gradients, lr) if i % 1000 == 0 or i == num_iterations - 1: val_preds = nn_model.forward(X_val_processed)['pred'] validation_cost = nn_model.compute_loss(y_val, val_preds) print(f"Iteration {i}: Training Loss={cost:.4f}, Validation Loss={validation_cost:.4f}") print('预测结果:') predictions = nn_model.forward(X_val_processed)['pred'] print(predictions) ```
阅读全文

相关推荐

最新推荐

recommend-type

BP神经网络原理及Python实现代码

在Python中,实现BP神经网络通常涉及以下几个步骤: 1. **数据预处理**:这里构造了一个1000条数据集,包含两个离散特征a1和a2,一个连续特征a3,以及一个分类标签c_id。数据通过随机数生成,满足特定条件以模拟...
recommend-type

BP神经网络python简单实现

- TensorFlow是一个强大的深度学习库,提供了现成的API来构建和训练神经网络,包括BP神经网络,简化了代码实现,提高了效率。 在Python中实现BP神经网络,可以加深对神经网络工作原理的理解,同时也方便进行实验和...
recommend-type

基于python的BP神经网络及异或实现过程解析

通过实例代码,我们可以理解BP神经网络的工作原理,并了解如何解决非线性问题,如异或。然而,实际应用中可能还需要考虑更多因素,如正则化、批量大小的选择、学习率衰减策略等,以提高模型的泛化能力和训练效率。
recommend-type

Python:客运量与货运量预测-BP神经网络

【Python实现BP神经网络进行客运量与货运量预测】 BP(Back Propagation)神经网络是一种广泛应用的多层前馈神经网络,尤其适用于非线性问题的解决,如本例中的客运量与货运量预测。BP神经网络的核心在于通过反向...
recommend-type

Python实现的三层BP神经网络算法示例

总的来说,这个Python实现的三层BP神经网络提供了理解和实践神经网络的基本框架。开发者可以根据实际需求调整参数,如隐藏层的节点数,以及训练过程中的学习率和迭代次数,以优化网络的性能。同时,这个示例也可以...
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。