A*算法matlab代码
时间: 2024-04-07 21:25:25 浏览: 150
A*算法是一种常用的启发式搜索算法,用于在图形或网络中找到最短路径。下面是一个简单的A*算法的Matlab代码示例:
```matlab
function [path, cost] = Astar(start, goal, graph, heuristic)
% 初始化起始节点和目标节点
startNode = Node(start, 0, heuristic(start));
goalNode = Node(goal, Inf, 0);
% 初始化开放列表和关闭列表
openList = PriorityQueue();
openList.insert(startNode);
closedList = containers.Map();
while ~openList.isEmpty()
% 从开放列表中选择具有最小总代价的节点
currentNode = openList.pop();
% 如果当前节点是目标节点,则找到了最短路径
if currentNode == goalNode
path = reconstructPath(currentNode);
cost = currentNode.g;
return;
end
% 将当前节点添加到关闭列表中
closedList(currentNode.id) = currentNode;
% 获取当前节点的邻居节点
neighbors = getNeighbors(currentNode, graph);
for i = 1:length(neighbors)
neighbor = neighbors(i);
% 如果邻居节点已经在关闭列表中,则跳过
if isKey(closedList, neighbor.id)
continue;
end
% 计算邻居节点的代价
gScore = currentNode.g + distance(currentNode, neighbor);
% 如果邻居节点不在开放列表中,则将其添加到开放列表中
if ~openList.contains(neighbor)
neighbor.g = gScore;
neighbor.h = heuristic(neighbor.id);
neighbor.parent = currentNode;
openList.insert(neighbor);
else
% 如果邻居节点已经在开放列表中,并且新的代价更小,则更新代价和父节点
if gScore < neighbor.g
neighbor.g = gScore;
neighbor.parent = currentNode;
openList.updatePriority(neighbor);
end
end
end
end
% 如果开放列表为空,则无法找到最短路径
path = [];
cost = Inf;
end
function path = reconstructPath(node)
% 从目标节点开始,沿着父节点回溯,构建最短路径
path = [];
while ~isempty(node)
path = [node.id, path];
node = node.parent;
end
end
function distance = distance(node1, node2)
% 计算两个节点之间的距离(可以根据具体情况进行修改)
distance = norm(node1.id - node2.id);
end
function neighbors = getNeighbors(node, graph)
% 获取当前节点的邻居节点(可以根据具体情况进行修改)
neighbors = graph(node.id);
end
classdef Node
properties
id % 节点ID
g % 从起始节点到当前节点的代价
h % 从当前节点到目标节点的启发式估计代价
parent % 父节点
end
methods
function obj = Node(id, g, h)
obj.id = id;
obj.g = g;
obj.h = h;
obj.parent = [];
end
end
end
classdef PriorityQueue
properties
elements % 元素列表
priorities % 优先级列表
end
methods
function obj = PriorityQueue()
obj.elements = {};
obj.priorities = [];
end
function insert(obj, element)
% 将元素插入到优先级队列中
obj.elements{end+1} = element;
obj.priorities(end+1) = element.g + element.h;
end
function element = pop(obj)
% 弹出具有最小优先级的元素
[~, index] = min(obj.priorities);
element = obj.elements{index};
obj.elements(index) = [];
obj.priorities(index) = [];
end
function updatePriority(obj, element)
% 更新元素的优先级
index = find(obj.elements == element);
obj.priorities(index) = element.g + element.h;
end
function containsElement = contains(obj, element)
% 判断元素是否在优先级队列中
containsElement = any(obj.elements == element);
end
function isEmptyQueue = isEmpty(obj)
% 判断优先级队列是否为空
isEmptyQueue = isempty(obj.elements);
end
end
end
```
这段代码实现了A*算法的基本逻辑,包括节点类、优先级队列类和主函数。你可以根据自己的需求进行修改和扩展。希望对你有帮助!
阅读全文