Python Apriori算法代码
时间: 2024-04-16 11:22:24 浏览: 136
Apriori算法是一种经典的关联规则挖掘算法,用于发现数据集中的频繁项集。在Python中,可以使用mlxtend库来实现Apriori算法。下面是一个简单的示例代码:
```python
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori
# 定义数据集
dataset = [['牛奶', '面包', '尿布'],
['可乐', '面包', '尿布', '啤酒'],
['牛奶', '尿布', '啤酒', '鸡蛋'],
['面包', '牛奶', '尿布', '啤酒'],
['面包', '牛奶', '尿布', '可乐']]
# 将数据集转换为适合Apriori算法的格式
te = TransactionEncoder()
te_ary = te.fit(dataset).transform(dataset)
df = pd.DataFrame(te_ary, columns=te.columns_)
# 使用Apriori算法找出频繁项集
frequent_itemsets = apriori(df, min_support=0.2, use_colnames=True)
# 打印频繁项集
print(frequent_itemsets)
```
上述代码中,我们首先定义了一个数据集,然后使用TransactionEncoder将数据集转换为适合Apriori算法的格式。接着,我们使用apriori函数找出频繁项集,并指定了最小支持度为0.2。最后,打印出频繁项集。
阅读全文