apriori算法代码
时间: 2023-11-12 21:44:27 浏览: 93
当然,我可以帮你提供 Apriori 算法的示例代码。以下是一个基于 Python 的简单实现:
```python
def apriori(transactions, min_support):
itemsets = find_frequent_1_itemsets(transactions, min_support)
all_frequent_itemsets = itemsets.copy()
k = 2
while itemsets:
itemsets = generate_candidates(itemsets, k)
frequent_itemsets = find_frequent_k_itemsets(itemsets, transactions, min_support)
all_frequent_itemsets.update(frequent_itemsets)
k += 1
return all_frequent_itemsets
def find_frequent_1_itemsets(transactions, min_support):
item_counts = {}
for transaction in transactions:
for item in transaction:
if item in item_counts:
item_counts[item] += 1
else:
item_counts[item] = 1
num_transactions = len(transactions)
frequent_itemsets = {}
for item, count in item_counts.items():
support = count / num_transactions
if support >= min_support:
frequent_itemsets[frozenset([item])] = support
return frequent_itemsets
def generate_candidates(itemsets, k):
candidates = set()
for itemset1 in itemsets:
for itemset2 in itemsets:
union = itemset1.union(itemset2)
if len(union) == k:
candidates.add(union)
return candidates
def find_frequent_k_itemsets(candidates, transactions, min_support):
item_counts = {}
for transaction in transactions:
for candidate in candidates:
if candidate.issubset(transaction):
if candidate in item_counts:
item_counts[candidate] += 1
else:
item_counts[candidate] = 1
num_transactions = len(transactions)
frequent_itemsets = {}
for itemset, count in item_counts.items():
support = count / num_transactions
if support >= min_support:
frequent_itemsets[itemset] = support
return frequent_itemsets
```
使用示例:
```python
transactions = [
['A', 'B', 'D'],
['B', 'C', 'E'],
['A', 'B', 'C', 'E'],
['B', 'E']
]
min_support = 0.5
frequent_itemsets = apriori(transactions, min_support)
print(frequent_itemsets)
```
这段代码实现了 Apriori 算法的关键部分,包括找到频繁 1 项集、生成候选项集、找到频繁 k 项集等步骤。你可以根据自己的数据和需求进行相应的调整和扩展。希望对你有所帮助!
阅读全文