关联规则apriori算法代码
时间: 2024-05-02 13:14:39 浏览: 141
以下是关联规则Apriori算法的代码示例:
```python
def generate_candidates(itemset, k):
candidates = []
n = len(itemset)
for i in range(n):
for j in range(i+1, n):
# 获取前k-2个项相同的两个项集
if itemset[i][:k-2] == itemset[j][:k-2]:
# 合并两个项集
candidate = itemset[i] + [itemset[j][-1]]
candidates.append(candidate)
return candidates
def prune_candidates(candidates, prev_itemset, k):
pruned_candidates = []
for candidate in candidates:
# 检查候选项集的所有子集是否都在上一级频繁项集中
subsets = itertools.combinations(candidate, k-1)
if all(subset in prev_itemset for subset in subsets):
pruned_candidates.append(candidate)
return pruned_candidates
def calculate_support(itemset, transactions):
count = 0
for transaction in transactions:
if set(itemset).issubset(transaction):
count += 1
support = count / len(transactions)
return support
def apriori(transactions, min_support):
itemset = [[item] for item in set(itertools.chain(*transactions))]
frequent_itemsets = []
k = 2
while itemset:
candidates = generate_candidates(itemset, k)
candidates = prune_candidates(candidates, frequent_itemsets[-1], k)
frequent_itemsets_k = []
for candidate in candidates:
support = calculate_support(candidate, transactions)
if support >= min_support:
frequent_itemsets_k.append(candidate)
frequent_itemsets.extend(frequent_itemsets_k)
itemset = frequent_itemsets_k
k += 1
return frequent_itemsets
# 示例数据
transactions = [['A', 'B', 'E'], ['A', 'B', 'C', 'E'], ['A', 'B', 'C'], ['B', 'D'], ['B', 'C'], ['A', 'B', 'D'], ['B', 'C', 'D'], ['A', 'C'], ['B', 'C'], ['A', 'C']]
min_support = 0.3
# 调用Apriori算法
frequent_itemsets = apriori(transactions, min_support)
print(frequent_itemsets)
```
这段代码实现了Apriori算法,通过输入的交易数据和最小支持度,计算出频繁项集。具体步骤包括生成候选项集、剪枝、计算支持度等。最后输出频繁项集。
阅读全文