python hog直方图

时间: 2023-09-29 16:00:56 浏览: 102
HOG(Histogram of Oriented Gradients)是一种用于图像特征提取的算法。它通过计算图像中各个像素点的梯度方向和梯度强度,进而生成一个描述图像纹理特征的直方图。 HOG算法主要包含以下几个步骤: 1. 图像预处理:首先,将彩色图像转换为灰度图像,以简化计算。然后对图像进行归一化处理,使得图像灰度值范围在0到255之间。 2. 计算梯度:对预处理后的图像进行梯度计算。通过使用一维卷积核,可以计算图像中每个像素点的梯度方向和梯度强度。梯度方向表示了像素点从亮到暗变化的方向,梯度强度表示了像素点的变化幅度。 3. 划分cell:将图像划分为多个大小相同的cell,每个cell中包含一定数量的像素点。划分cell的目的是为了进一步提取局部的特征。 4. 构建直方图:对每个cell中的像素点进行进一步处理,将其按照梯度方向分配到相应的方向区间中。然后统计每个区间的像素点数量,生成一个描述该cell特征的直方图。 5. 归一化:为了进一步提取全局特征,并使特征具有一定的不变性,对整个图像的所有cell的直方图进行归一化处理。常用的归一化方法有L1和L2范数归一化。 6. 特征拼接和分类器训练:将所有图像的HOG特征串联起来,形成一个特征向量。这个特征向量可以作为目标检测和分类的输入。通常,还需要使用机器学习算法训练一个分类器,以便根据HOG特征进行目标的识别和检测。 总的来说,Python中的HOG算法是基于图像梯度信息进行特征提取的一种方法。它可以应用于目标检测、行人检测、人脸识别等领域,在计算机视觉和机器学习中具有广泛的应用。
相关问题

用Python绘制HOG梯度直方图

好的,这是一个计算机视觉问题,我可以为您解答。在Python中,我们可以使用OpenCV库来计算并绘制HOG梯度直方图。您可以参考以下代码: ``` import cv2 import numpy as np # 加载图像 img = cv2.imread('image.jpg') # 将图像转换为灰度图 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 计算HOG描述符 winSize = (64,128) blockSize = (16,16) blockStride = (8,8) cellSize = (8,8) nbins = 9 hog = cv2.HOGDescriptor(winSize,blockSize,blockStride,cellSize,nbins) hist = hog.compute(gray) # 绘制直方图 bin = np.arange(nbins) bin = bin / nbins * np.pi angle = hog.getDescriptorOrientation(hist, nbins) magnitude = hog.getDescriptorMagnitude(hist, nbins) delta = np.pi / nbins plt.bar(bin, magnitude, width=delta, edgecolor='none') # 显示图像 plt.show() ``` 上述代码会先将图像转换为灰度图,然后使用HOGDescriptor计算HOG描述符,最后绘制直方图并显示出来。如果您需要更详细的解释,请告诉我。

python hog特征提取

### 回答1: HOG(Histogram of Oriented Gradients)是一种计算机视觉中的特征提取算法,常用于目标检测和行人识别等任务中。在Python中,可以使用OpenCV或scikit-image等库来实现HOG特征提取。 以scikit-image为例,可以通过以下代码实现HOG特征提取: ``` from skimage.feature import hog from skimage import data, exposure # 读取图像 image = data.astronaut() # 计算HOG特征 fd, hog_image = hog(image, orientations=8, pixels_per_cell=(16, 16), cells_per_block=(1, 1), visualize=True, multichannel=True) # 对HOG特征进行可视化 hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 10)) # 显示原始图像和HOG特征图像 import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharex=True, sharey=True) ax1.axis('off') ax1.imshow(image, cmap=plt.cm.gray) ax1.set_title('Input image') hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 10)) ax2.axis('off') ax2.imshow(hog_image_rescaled, cmap=plt.cm.gray) ax2.set_title('Histogram of Oriented Gradients') plt.show() ``` 其中,`image`代表输入的图像,`orientations`指定方向的个数,`pixels_per_cell`指定每个细胞的像素数,`cells_per_block`指定每个块包含的细胞数。`fd`表示提取得到的HOG特征向量,`hog_image`表示HOG特征图像。最后,使用`matplotlib`库进行可视化,显示原始图像和HOG特征图像。 ### 回答2: HOG(Histogram of Oriented Gradients)特征提取是一种用于计算图像特征的方法,最初是由Navneet Dalal和Bill Triggs在2005年提出的。它在计算机视觉领域被广泛应用于物体检测和图像分类任务。 HOG特征提取的过程可以分为以下几个步骤: 1. 归一化图像大小:为了保持计算效率,首先需要将图像缩放为固定的大小。通常,使用缩放后的图像尺寸在64x128到128x256之间。 2. 计算梯度:对于每个像素,通过计算其在水平和垂直方向上的梯度,确定其梯度的大小和方向。这些梯度用于描述图像的边缘和纹理信息。 3. 划分图像为小单元:将缩放后的图像划分为一系列重叠的小单元。每个小单元通常为8x8像素。 4. 创建梯度方向直方图:对于每个小单元,根据其中像素的梯度方向和大小,创建梯度方向直方图。一个直方图通常包含9个方向的梯度值。 5. 归一化块:将相邻的若干小单元组合成块,并对每个块内的直方图进行归一化处理。这有助于提高特征的鲁棒性和可区分性。 6. 拼接特征向量:将所有块的特征向量拼接在一起,形成最终的HOG特征向量。 HOG特征提取通过描述图像中梯度的方向信息来提取特征,而不是关注像素的具体值。这使得HOG特征对于光照变化和几何变换相对不敏感,具有较好的鲁棒性。在图像处理和计算机视觉任务中,HOG特征已被广泛应用于人体检测、行人检测、物体识别等领域。 ### 回答3: HOG(方向梯度直方图)是一种计算机视觉领域常用的特征提取算法,它用于对图像进行描述和识别。Python中有各种库和模块可以用来实现HOG特征提取。 HOG特征提取的步骤如下: 1. 图像预处理:将图像转化为灰度图,如果图像尺寸较大,还可以进行降采样。 2. 计算图像的梯度:使用Sobel等算子计算图像在水平和竖直方向上的梯度。计算梯度的目的是为了检测图像中的边缘和纹理。 3. 划分图像为小的块(cells):将图像分割为大小固定的小块,每个小块包含多个像素。 4. 计算每个小块的梯度直方图:对于每个小块,统计其内像素的梯度方向和强度,并将其组织成直方图。 5. 归一化梯度直方图:对于每个小块的梯度直方图,可以对其进行归一化,使得特征对光照等变化更加不敏感。 6. 将小块的特征组合成一个全局的特征向量:将所有小块的特征向量进行串联,形成一个用于描述整个图像的全局特征向量。 通过以上步骤,我们可以得到一个用于描述图像的HOG特征向量。这个特征向量可以用于识别和分类任务,比如行人检测、物体识别等。 在Python中,我们可以使用第三方库如OpenCV或scikit-image来实现HOG特征提取。这些库提供了方便的函数和方法,可以直接使用。 例如,使用OpenCV库,我们可以使用以下代码来实现HOG特征提取: ```python import cv2 def hog_feature_extraction(image): # 图像预处理 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 创建HOG对象 hog = cv2.HOGDescriptor() # 计算HOG特征向量 features = hog.compute(gray) return features ``` 上述代码中,我们首先将彩色图像转换为灰度图像,然后创建一个HOG对象,并使用`compute`函数计算图像的HOG特征向量。 总结来说,Python中可以使用第三方库实现HOG特征提取,该特征提取方法可以用于图像描述和识别任务,具有良好的性能和鲁棒性。
阅读全文

相关推荐

最新推荐

recommend-type

python实现图片处理和特征提取详解

除此之外,还有SIFT(尺度不变特征变换)、SURF(加速稳健特征)、HOG(方向梯度直方图)等高级特征提取方法,用于更复杂的图像识别任务。 5. **应用实例**: 在人流量统计场景中,原始图片可能存在背景物体(如...
recommend-type

python手势识别上下左右(SVM+HOG特征)

在本文中,我们将探讨如何使用Python进行手势识别,特别是上下左右的手势,通过结合支持向量机(SVM)和方向梯度直方图(HOG)特征。这个项目主要涉及计算机视觉和机器学习,利用OpenCV库进行图像处理,以及scikit-...
recommend-type

Python + OpenCV 实现LBP特征提取的示例代码

然而,对于复杂的视觉任务,可能需要结合其他更高级的特征提取方法,如HOG、SIFT或SURF,以提高识别性能。 总之,通过Python和OpenCV,我们可以轻松实现LBP特征的提取,并将其应用于各种图像处理任务。了解和掌握...
recommend-type

只需要用一张图片素材文档选择器.zip

只需要用一张图片素材文档选择器.zip
recommend-type

火炬连体网络在MNIST的2D嵌入实现示例

资源摘要信息:"Siamese网络是一种特殊的神经网络,主要用于度量学习任务中,例如人脸验证、签名识别或任何需要判断两个输入是否相似的场景。本资源中的实现例子是在MNIST数据集上训练的,MNIST是一个包含了手写数字的大型数据集,广泛用于训练各种图像处理系统。在这个例子中,Siamese网络被用来将手写数字图像嵌入到2D空间中,同时保留它们之间的相似性信息。通过这个过程,数字图像能够被映射到一个欧几里得空间,其中相似的图像在空间上彼此接近,不相似的图像则相对远离。 具体到技术层面,Siamese网络由两个相同的子网络构成,这两个子网络共享权重并且并行处理两个不同的输入。在本例中,这两个子网络可能被设计为卷积神经网络(CNN),因为CNN在图像识别任务中表现出色。网络的输入是成对的手写数字图像,输出是一个相似性分数或者距离度量,表明这两个图像是否属于同一类别。 为了训练Siamese网络,需要定义一个损失函数来指导网络学习如何区分相似与不相似的输入对。常见的损失函数包括对比损失(Contrastive Loss)和三元组损失(Triplet Loss)。对比损失函数关注于同一类别的图像对(正样本对)以及不同类别的图像对(负样本对),鼓励网络减小正样本对的距离同时增加负样本对的距离。 在Lua语言环境中,Siamese网络的实现可以通过Lua的深度学习库,如Torch/LuaTorch,来构建。Torch/LuaTorch是一个强大的科学计算框架,它支持GPU加速,广泛应用于机器学习和深度学习领域。通过这个框架,开发者可以使用Lua语言定义模型结构、配置训练过程、执行前向和反向传播算法等。 资源的文件名称列表中的“siamese_network-master”暗示了一个主分支,它可能包含模型定义、训练脚本、测试脚本等。这个主分支中的代码结构可能包括以下部分: 1. 数据加载器(data_loader): 负责加载MNIST数据集并将图像对输入到网络中。 2. 模型定义(model.lua): 定义Siamese网络的结构,包括两个并行的子网络以及最后的相似性度量层。 3. 训练脚本(train.lua): 包含模型训练的过程,如前向传播、损失计算、反向传播和参数更新。 4. 测试脚本(test.lua): 用于评估训练好的模型在验证集或者测试集上的性能。 5. 配置文件(config.lua): 包含了网络结构和训练过程的超参数设置,如学习率、批量大小等。 Siamese网络在实际应用中可以广泛用于各种需要比较两个输入相似性的场合,例如医学图像分析、安全验证系统等。通过本资源中的示例,开发者可以深入理解Siamese网络的工作原理,并在自己的项目中实现类似的网络结构来解决实际问题。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧

![L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. L2正则化基础概念 在机器学习和统计建模中,L2正则化是一个广泛应用的技巧,用于改进模型的泛化能力。正则化是解决过拟
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,需要遵循一系列步骤来确保信息系统的安全性和业务连续性规划的有效性。首先,组织需要明确信息安全事件的定义,理解信息安全事态和信息安全事件的区别,并建立事件分类和分级机制。 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 依照GB/T19716标准,组织应制定信息安全事件管理策略,明确组织内各个层级的角色与职责。此外,需要设置信息安全事件响应组(ISIRT),并为其配备必要的资源、
recommend-type

Angular插件增强Application Insights JavaScript SDK功能

资源摘要信息:"Microsoft Application Insights JavaScript SDK-Angular插件" 知识点详细说明: 1. 插件用途与功能: Microsoft Application Insights JavaScript SDK-Angular插件主要用途在于增强Application Insights的Javascript SDK在Angular应用程序中的功能性。通过使用该插件,开发者可以轻松地在Angular项目中实现对特定事件的监控和数据收集,其中包括: - 跟踪路由器更改:插件能够检测和报告Angular路由的变化事件,有助于开发者理解用户如何与应用程序的导航功能互动。 - 跟踪未捕获的异常:该插件可以捕获并记录所有在Angular应用中未被捕获的异常,从而帮助开发团队快速定位和解决生产环境中的问题。 2. 兼容性问题: 在使用Angular插件时,必须注意其与es3不兼容的限制。es3(ECMAScript 3)是一种较旧的JavaScript标准,已广泛被es5及更新的标准所替代。因此,当开发Angular应用时,需要确保项目使用的是兼容现代JavaScript标准的构建配置。 3. 安装与入门: 要开始使用Application Insights Angular插件,开发者需要遵循几个简单的步骤: - 首先,通过npm(Node.js的包管理器)安装Application Insights Angular插件包。具体命令为:npm install @microsoft/applicationinsights-angularplugin-js。 - 接下来,开发者需要在Angular应用的适当组件或服务中设置Application Insights实例。这一过程涉及到了导入相关的类和方法,并根据Application Insights的官方文档进行配置。 4. 基本用法示例: 文档中提到的“基本用法”部分给出的示例代码展示了如何在Angular应用中设置Application Insights实例。示例中首先通过import语句引入了Angular框架的Component装饰器以及Application Insights的类。然后,通过Component装饰器定义了一个Angular组件,这个组件是应用的一个基本单元,负责处理视图和用户交互。在组件类中,开发者可以设置Application Insights的实例,并将插件添加到实例中,从而启用特定的功能。 5. TypeScript标签的含义: TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,以帮助开发更大型的JavaScript应用。使用TypeScript可以提高代码的可读性和可维护性,并且可以利用TypeScript提供的强类型特性来在编译阶段就发现潜在的错误。文档中提到的标签"TypeScript"强调了该插件及其示例代码是用TypeScript编写的,因此在实际应用中也需要以TypeScript来开发和维护。 6. 压缩包子文件的文件名称列表: 在实际的项目部署中,可能会用到压缩包子文件(通常是一些JavaScript库的压缩和打包后的文件)。在本例中,"applicationinsights-angularplugin-js-main"很可能是该插件主要的入口文件或者压缩包文件的名称。在开发过程中,开发者需要确保引用了正确的文件,以便将插件的功能正确地集成到项目中。 总结而言,Application Insights Angular插件是为了加强在Angular应用中使用Application Insights Javascript SDK的能力,帮助开发者更好地监控和分析应用的运行情况。通过使用该插件,可以跟踪路由器更改和未捕获异常等关键信息。安装与配置过程简单明了,但是需要注意兼容性问题以及正确引用文件,以确保插件能够顺利工作。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依