bp神经网络推导过程

时间: 2024-08-12 18:08:19 浏览: 61
BP(Backpropagation,反向传播)神经网络是一种用于训练人工神经网络的常用算法,其推导过程主要包括前向传播和反向传播两个步骤: 1. **前向传播**: - 输入层:将输入数据送入网络,经过一系列线性和非线性变换(例如加权和、激活函数)。 - 隐藏层:每一层的神经元接收到上一层的输出,并进行同样的计算。 - 输出层:对于最后一层,通常是预测结果,用当前权重计算出网络对输入的预测值。 2. **代价函数**: - 基于预测值和实际标签,定义一个代价或误差函数(如均方误差、交叉熵等),衡量模型预测的准确性。 3. **梯度计算**: - **反向传播**:从输出层开始,计算误差相对于每个权重的偏导数,这一步是关键,使用链式法则逐层逆向传播误差。 - 对于输出层,误差直接与权重相关;对于隐藏层,误差还与前一层的权重有关,这个过程形成了误差梯度。 4. **权重更新**: - 使用梯度下降或其他优化算法,根据计算出的梯度对网络权重进行调整,目的是最小化代价函数。 5. **迭代过程**: - 重复前向传播和反向传播,不断调整权重,直到达到预设的停止条件(如达到最大迭代次数,或者代价函数不再明显下降)。
相关问题

ga优化bp神经网络推导过程

GA(遗传算法)优化BP(反向传播)神经网络的推导过程如下: 1. 初始化种群:首先,我们需要初始化一组神经网络权重参数作为种群的一个个个体。每个个体都代表了一个可能的神经网络解决方案。 2. 评估适应性:对于每个个体,我们使用训练数据集来评估其适应性。适应性可以使用某种误差函数来度量,如均方差误差。 3. 选择:利用适应性评估结果,我们可以进行选择操作,以选择一些适应性较高的个体作为父代。 4. 交叉:从所选的父代中,我们可以随机选择两个个体进行交叉操作,以产生新的后代。交叉操作可采用单点交叉、多点交叉等方式。 5. 变异:为了增加种群的多样性,我们可以对一些后代进行变异操作。变异操作通常是在个体的基因序列中随机选择几个位置上的基因进行突变。 6. 繁衍新一代:经过交叉和变异操作后,我们得到了新的一代个体。这些新个体加入到原来的种群中。 7. 重复执行步骤2-6:重复执行步骤2-6,直到满足停止条件。停止条件可以是达到最大迭代次数、达到了预设的适应性阈值等。 8. 最优解的选择:在停止条件满足后,从最终的种群中选择适应性最高的个体作为我们的最优解。这个最优解就是经过GA优化后的BP神经网络。 通过GA优化BP神经网络,我们可以通过遗传算法的选择、交叉和变异操作来搜索最优的神经网络权重参数,提高神经网络的性能和泛化能力。

bp神经网络推导公式

BP神经网络的推导公式是基于反向传播算法的。首先,我们需要定义代价函数,通常使用平方误差函数作为代价函数。然后,通过梯度下降算法来最小化代价函数,从而求得最优的权重和偏置值。具体推导过程如下: 1. 前向传播: a. 输入层:将输入样本数据传递给第一个隐藏层; b. 隐藏层:根据输入数据和权重、偏置值进行加权求和,并通过激活函数(如Sigmoid函数)进行非线性映射; c. 输出层:将隐藏层的输出数据传递给输出层,并使用输出层的激活函数(如Sigmoid函数或线性函数)进行非线性映射。 2. 反向传播: a. 计算输出层的误差:根据代价函数对输出层的输出值进行求导,得到输出层的误差; b. 传播误差至隐藏层:根据输出层的误差以及权重值,逐层反向计算隐藏层的误差; c. 更新权重和偏置值:根据误差和梯度下降算法,更新权重和偏置值。 推导公式具体如下: 1. 计算输出层的误差: δL = (aL - y) * f'(zL) 其中,δL表示输出层的误差,aL表示输出层的输出值,y表示样本的真实值,f'表示输出层激活函数的导数,zL表示输出层的加权求和值。 2. 传播误差至隐藏层: δl = (W(l+1) * δ(l+1)) ⊙ f'(zl) 其中,δl表示第l层隐藏层的误差,W(l+1)表示第l+1层到第l层的权重矩阵,⊙表示元素级别的乘法,f'表示隐藏层激活函数的导数,zl表示第l层的加权求和值。 3. 更新权重和偏置值: ΔW(l) = α * δ(l+1) * a(l)^T Δb(l) = α * δ(l+1) 其中,ΔW(l)表示第l层到第l+1层的权重矩阵的更新值,Δb(l)表示第l层到第l+1层的偏置值的更新值,α表示学习率,a(l)表示第l层的输出值。 以上就是BP神经网络的推导公式。
阅读全文

相关推荐

最新推荐

recommend-type

神经网络参数更新公式推导(一).docx

神经网络参数更新公式推导(一) 神经网络是机器学习领域中的一个重要分支,神经网络的参数更新是一个关键的问题。本文主要介绍了单隐层网络的发展历程、发展期间遇到的问题、机器解决方案,以及根据目标函数和网络...
recommend-type

神经网络参数更新公式推导(二).docx

该公式推导有助于理解 BP 反向传播算法和深度神经网络的参数优化过程,为设计新的深层网络打下基础。 一、深度神经网络的特点 深度神经网络一般采用的激活函数为 ReLU,而不是 Sigmoid 函数,并且没有了阈值,而在...
recommend-type

BP神经网络的基本原理(很清楚)

BP神经网络的基本原理 ...BP神经网络的基本原理是基于BP算法的,它具有理论依据可靠、推导过程严谨、精度较高、通用性较好的优点,但也存在一些缺点,需要根据具体情况选择和调整算法,以达到最好的效果。
recommend-type

神经网络bp算法ppt讲义

BP神经网络算法是基于多层前馈网络模型的误差反传算法,主要内容包括基本思想、推导过程、程序实现和学习算法的功能。该算法的提出是为了提高网络性能,如分类能力,並解决了长期以来存在的权值调整问题。 BP算法的...
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依