HTTPSConnectionPool(host='att01.zjut.cc', port=443): Max retries exceeded with url: /attachment/college/album/big/yzy/img1/p00007333.jpeg (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x0000018905469E10>, 'Connection to att01.zjut.cc timed out. (connect timeout=None)'))
时间: 2024-04-19 09:25:19 浏览: 97
对于这个问题,可能是由于连接超时导致的。你可以尝试以下几种方法来解决这个问题:
1. 检查你的网络连接是否正常。确保你的网络连接稳定,并且没有任何阻塞或限制。
2. 检查目标服务器的可用性。确认服务器att01.zjut.cc是否可访问,并且没有任何故障或维护。
3. 尝试使用其他工具或浏览器访问该URL,看是否能够成功获取到图片。这有助于确定问题是否出在你的代码中,或者是服务器端的问题。
4. 如果你使用的是代理服务器,请检查代理服务器的设置是否正确,并且没有任何限制或阻塞。
如果以上方法都无法解决问题,你可以尝试联系服务器管理员或者网络提供商寻求进一步的帮助。
相关问题
class ACmix(nn.Module): def __init__(self, in_planes, out_planes, kernel_att=7, head=4, kernel_conv=3, stride=1, dilation=1): super(ACmix, self).__init__() self.in_planes = in_planes self.out_planes = out_planes self.head = head self.kernel_att = kernel_att self.kernel_conv = kernel_conv self.stride = stride self.dilation = dilation self.rate1 = torch.nn.Parameter(torch.Tensor(1)) self.rate2 = torch.nn.Parameter(torch.Tensor(1)) self.head_dim = self.out_planes // self.head self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1) self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1) self.conv3 = nn.Conv2d(in_planes, out_planes, kernel_size=1) self.conv_p = nn.Conv2d(2, self.head_dim, kernel_size=1) self.padding_att = (self.dilation * (self.kernel_att - 1) + 1) // 2 self.pad_att = torch.nn.ReflectionPad2d(self.padding_att) self.unfold = nn.Unfold(kernel_size=self.kernel_att, padding=0, stride=self.stride) self.softmax = torch.nn.Softmax(dim=1) self.fc = nn.Conv2d(3 * self.head, self.kernel_conv * self.kernel_conv, kernel_size=1, bias=False) self.dep_conv = nn.Conv2d(self.kernel_conv * self.kernel_conv * self.head_dim, out_planes, kernel_size=self.kernel_conv, bias=True, groups=self.head_dim, padding=1, stride=stride) self.reset_parameters()逐行解释代码
这段代码是定义了一个名为ACmix的类,继承自PyTorch中的nn.Module。它包含了一些卷积、全连接、非线性激活函数等层,用于实现图像处理任务中的注意力机制和特征融合。
具体来说,逐行解释代码如下:
```
class ACmix(nn.Module):
def __init__(self, in_planes, out_planes, kernel_att=7, head=4, kernel_conv=3, stride=1, dilation=1):
super(ACmix, self).__init__()
```
定义ACmix类,其中包含了初始化函数__init__()。其中in_planes表示输入特征图的通道数,out_planes表示输出特征图的通道数,kernel_att表示注意力机制的卷积核大小,head表示注意力机制的头数,kernel_conv表示特征融合的卷积核大小,stride表示卷积的步长,dilation表示卷积的膨胀率。
```
self.in_planes = in_planes
self.out_planes = out_planes
self.head = head
self.kernel_att = kernel_att
self.kernel_conv = kernel_conv
self.stride = stride
self.dilation = dilation
self.rate1 = torch.nn.Parameter(torch.Tensor(1))
self.rate2 = torch.nn.Parameter(torch.Tensor(1))
self.head_dim = self.out_planes // self.head
```
将输入的参数保存到类的成员变量中,其中rate1和rate2是需要学习的参数,用于调整注意力机制中的权重。
```
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
self.conv3 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
```
定义三个卷积层,其中conv1和conv2用于计算注意力机制,conv3用于特征融合。
```
self.conv_p = nn.Conv2d(2, self.head_dim, kernel_size=1)
```
定义一个卷积层,用于将注意力机制中的特征图转换为头数的通道数。
```
self.padding_att = (self.dilation * (self.kernel_att - 1) + 1) // 2
self.pad_att = torch.nn.ReflectionPad2d(self.padding_att)
self.unfold = nn.Unfold(kernel_size=self.kernel_att, padding=0, stride=self.stride)
self.softmax = torch.nn.Softmax(dim=1)
```
定义一些辅助层,其中padding_att表示注意力机制的填充大小,pad_att表示进行反射填充的层,unfold表示对特征图进行展开的层,softmax表示对展开后的特征图进行softmax操作的层。
```
self.fc = nn.Conv2d(3 * self.head, self.kernel_conv * self.kernel_conv, kernel_size=1, bias=False)
self.dep_conv = nn.Conv2d(self.kernel_conv * self.kernel_conv * self.head_dim, out_planes,
kernel_size=self.kernel_conv, bias=True, groups=self.head_dim, padding=1,
stride=stride)
```
定义特征融合的卷积层和深度可分离卷积层,其中fc层用于将展开后的特征图进行特征融合,dep_conv层用于将融合后的特征图进行输出。
```
self.reset_parameters()
```
初始化模型参数。
for img_a, att_a in progressbar(train_dataloader): attgan.train() img_a = img_a.cuda() if args.gpu else img_a att_a = att_a.cuda() if args.gpu else att_a idx = torch.randperm(len(att_a)) att_b = att_a[idx].contiguous() att_a = att_a.type(torch.float) att_b = att_b.type(torch.float) att_a_ = (att_a * 2 - 1) * args.thres_int
这段代码是一个训练循环,用于在每个训练批次中训练 `attgan` 模型。
首先,使用 `progressbar(train_dataloader)` 创建了一个进度条对象,用于在训练过程中显示进度。
然后,通过迭代 `train_dataloader` 获取每个批次的图像 `img_a` 和属性 `att_a`。在循环中,调用 `attgan.train()` 将 `attgan` 设置为训练模式。
接下来,将图像和属性数据移动到 GPU 上(如果 `args.gpu` 为真)或者保持在 CPU 上。使用 `torch.randperm(len(att_a))` 生成一个随机排列的索引,用于对属性数据进行乱序操作。然后,通过索引将 `att_a` 中的属性值重新排序得到 `att_b`。
之后,使用 `.type(torch.float)` 将属性数据的类型转换为浮点型。
最后,将属性数据经过一系列数学计算进行归一化处理。`att_a` 的值乘以2,并减去1,然后再乘以命令行参数 `args.thres_int` 的值。这个过程将属性数据缩放到 -1 到 1 的范围内。
总结起来,这段代码通过迭代训练数据加载器获取每个批次的图像和属性数据。然后,对属性数据进行一系列的预处理操作,包括属性值的随机乱序和归一化处理。这些数据将被用于训练 `attgan` 模型。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)