Att = att.flatten() # [N*K] loss = torch.FloatTensor([0.0] * (N * K)).cuda() for i in range(N * K): loss[i] = net.loss(logits_for_instances[i].unsqueeze(0), support_label[i]) / N loss_tot = Att.dot(loss) grad = autograd.grad(loss_tot, W) W = W - task_lr * grad[0]
时间: 2024-04-11 16:30:56 浏览: 115
这段代码看起来是一个模型参数的更新过程。首先,将变量 Att 展平成形状为 [N*K] 的一维张量。然后,创建一个形状为 [N*K] 的全零张量 loss,并将其移动到 GPU 上。
接下来,通过一个循环计算每个样本的损失值,并将其存储在 loss 张量中。在每次循环中,使用模型的 logits_for_instances[i] 和 support_label[i] 计算出第 i 个样本的损失值,并除以 N 来平均化。
然后,通过 Att 点乘 loss,得到 loss_tot,这个值可以被视为加权的总损失。接着,使用自动求导函数 autograd.grad 计算出对 W 的梯度 grad[0],并将梯度乘以 task_lr(学习率)后与 W 相减,完成参数的更新。
需要注意的是,这段代码中涉及到的具体函数和变量的定义并未给出,因此无法提供更详细的解释。但从代码逻辑上来看,这段代码应该是一个基于梯度下降的参数更新过程。
相关问题
def sample(): batch_feature, batch_label, batch_att = data.next_batch(opt.batch_size) input_res.copy_(batch_feature) input_att.copy_(batch_att) input_label.copy_(util.map_label(batch_label, data.seenclasses)) def generate_syn_feature(netG, classes, attribute, num): nclass = classes.size(0) syn_feature = torch.FloatTensor(nclass*num, opt.resSize) syn_label = torch.LongTensor(nclass*num) syn_att = torch.FloatTensor(num, opt.attSize) syn_noise = torch.FloatTensor(num, opt.nz) if opt.cuda: syn_att = syn_att.cuda() syn_noise = syn_noise.cuda()
这段代码包含两个函数`sample()`和`generate_syn_feature()`,让我来逐个解释它们的功能。
`sample()`函数用于获取一个批次的样本数据。它按照批次大小`opt.batch_size`从数据集中获取特征(batch_feature)、标签(batch_label)和属性(batch_att)。然后,将获取到的数据分别复制到预定义的张量变量`input_res`、`input_att`和`input_label`中。在这段代码中,`input_res`、`input_att`和`input_label`分别表示图像特征、属性特征和标签。
`generate_syn_feature()`函数用于生成合成特征。它接受生成器网络(netG)、类别(classes)、属性(attribute)和生成样本数量(num)作为参数。首先,函数根据类别数量(nclass)和生成样本数量(num)创建张量变量`syn_feature`、`syn_label`、`syn_att`和`syn_noise`,用于存储合成特征、合成标签、合成属性和合成噪声。然后,根据是否启用GPU加速(opt.cuda),将`syn_att`和`syn_noise`转移到GPU上。在这段代码中,合成特征的维度为`(nclass*num, opt.resSize)`。
这两个函数可能是在生成样本和合成特征时使用的。在实际应用中,可能需要根据具体需求对这些函数进行适当的修改和调用。
class ACmix(nn.Module): def __init__(self, in_planes, out_planes, kernel_att=7, head=4, kernel_conv=3, stride=1, dilation=1): super(ACmix, self).__init__() self.in_planes = in_planes self.out_planes = out_planes self.head = head self.kernel_att = kernel_att self.kernel_conv = kernel_conv self.stride = stride self.dilation = dilation self.rate1 = torch.nn.Parameter(torch.Tensor(1)) self.rate2 = torch.nn.Parameter(torch.Tensor(1)) self.head_dim = self.out_planes // self.head self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1) self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1) self.conv3 = nn.Conv2d(in_planes, out_planes, kernel_size=1) self.conv_p = nn.Conv2d(2, self.head_dim, kernel_size=1) self.padding_att = (self.dilation * (self.kernel_att - 1) + 1) // 2 self.pad_att = torch.nn.ReflectionPad2d(self.padding_att) self.unfold = nn.Unfold(kernel_size=self.kernel_att, padding=0, stride=self.stride) self.softmax = torch.nn.Softmax(dim=1) self.fc = nn.Conv2d(3 * self.head, self.kernel_conv * self.kernel_conv, kernel_size=1, bias=False) self.dep_conv = nn.Conv2d(self.kernel_conv * self.kernel_conv * self.head_dim, out_planes, kernel_size=self.kernel_conv, bias=True, groups=self.head_dim, padding=1, stride=stride) self.reset_parameters()逐行解释代码
这段代码是定义了一个名为ACmix的类,继承自PyTorch中的nn.Module。它包含了一些卷积、全连接、非线性激活函数等层,用于实现图像处理任务中的注意力机制和特征融合。
具体来说,逐行解释代码如下:
```
class ACmix(nn.Module):
def __init__(self, in_planes, out_planes, kernel_att=7, head=4, kernel_conv=3, stride=1, dilation=1):
super(ACmix, self).__init__()
```
定义ACmix类,其中包含了初始化函数__init__()。其中in_planes表示输入特征图的通道数,out_planes表示输出特征图的通道数,kernel_att表示注意力机制的卷积核大小,head表示注意力机制的头数,kernel_conv表示特征融合的卷积核大小,stride表示卷积的步长,dilation表示卷积的膨胀率。
```
self.in_planes = in_planes
self.out_planes = out_planes
self.head = head
self.kernel_att = kernel_att
self.kernel_conv = kernel_conv
self.stride = stride
self.dilation = dilation
self.rate1 = torch.nn.Parameter(torch.Tensor(1))
self.rate2 = torch.nn.Parameter(torch.Tensor(1))
self.head_dim = self.out_planes // self.head
```
将输入的参数保存到类的成员变量中,其中rate1和rate2是需要学习的参数,用于调整注意力机制中的权重。
```
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
self.conv3 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
```
定义三个卷积层,其中conv1和conv2用于计算注意力机制,conv3用于特征融合。
```
self.conv_p = nn.Conv2d(2, self.head_dim, kernel_size=1)
```
定义一个卷积层,用于将注意力机制中的特征图转换为头数的通道数。
```
self.padding_att = (self.dilation * (self.kernel_att - 1) + 1) // 2
self.pad_att = torch.nn.ReflectionPad2d(self.padding_att)
self.unfold = nn.Unfold(kernel_size=self.kernel_att, padding=0, stride=self.stride)
self.softmax = torch.nn.Softmax(dim=1)
```
定义一些辅助层,其中padding_att表示注意力机制的填充大小,pad_att表示进行反射填充的层,unfold表示对特征图进行展开的层,softmax表示对展开后的特征图进行softmax操作的层。
```
self.fc = nn.Conv2d(3 * self.head, self.kernel_conv * self.kernel_conv, kernel_size=1, bias=False)
self.dep_conv = nn.Conv2d(self.kernel_conv * self.kernel_conv * self.head_dim, out_planes,
kernel_size=self.kernel_conv, bias=True, groups=self.head_dim, padding=1,
stride=stride)
```
定义特征融合的卷积层和深度可分离卷积层,其中fc层用于将展开后的特征图进行特征融合,dep_conv层用于将融合后的特征图进行输出。
```
self.reset_parameters()
```
初始化模型参数。
阅读全文