class EncoderBlock(nn.Module): def __init__(self, emb_s = 32, head_cnt = 8, dp1 = 0.1, dp2 = 0.1): super().__init__() emb = emb_s*head_cnt self.kqv = nn.Linear(emb_s, 3*emb_s, bias = False) self.dp = nn.Dropout(dp1) self.proj = nn.Linear(emb, emb,bias = False) self.head_cnt = head_cnt self.emb_s = emb_s self.ln1 = nn.LayerNorm(emb) self.ln2 = nn.LayerNorm(emb) self.ff = nn.Sequential( nn.Linear(emb, 4 * emb), nn.GELU(), nn.Linear(4 * emb, emb), nn.Dropout(dp2), ) def mha(self, x): B, T, _ = x.shape x = x.reshape(B, T, self.head_cnt, self.emb_s) k, q, v = torch.split(self.kqv(x), self.emb_s, dim = -1) # B, T, h, emb_s att = F.softmax(torch.einsum('bihk,bjhk->bijh', q, k)/self.emb_s**0.5, dim = 2) #B, T, T, h sum on dim 1 = 1 res = torch.einsum('btih,bihs->bths', att, v).reshape(B, T, -1) #B, T, h * emb_s return self.dp(self.proj(res)) def forward(self, x): ## add & norm later. x = self.ln1(x + self.mha(x)) x = self.ln2(x + self.ff(x)) return x这段代码是什么意思
时间: 2024-01-31 21:03:08 浏览: 171
这段代码定义了一个EncoderBlock模块,它是Transformer中的一个基本模块,包括了一个多头自注意力层(Multi-Head Attention)和一个前馈神经网络层(Feedforward Neural Network)。
在初始化函数中,首先定义了一个线性层self.kqv,用于将输入x的每个词的特征映射到key、query和value三个空间中。然后定义了一个Dropout层self.dp,用于在训练过程中随机丢弃一些神经元,以防止过拟合。接下来定义了一个线性变换self.proj,用于将多头自注意力层的输出映射回原始维度。最后定义了两个LayerNorm层和一个前馈神经网络层self.ff,用于对多头自注意力层和前馈神经网络层的输出进行归一化和非线性变换。
在mha函数中,首先将输入x的形状从[B, T, emb_s]转换为[B, T, head_cnt, emb_s],然后通过self.kqv将每个词的特征映射到key、query和value三个空间中,再计算多头自注意力矩阵att,并对每个词的value进行加权求和得到多头自注意力层的输出res。最后通过self.proj将多头自注意力层的输出映射回原始维度,并加上Dropout层。
在forward函数中,首先通过self.mha计算多头自注意力层的输出,并将其与输入x相加后通过LayerNorm层归一化。然后再通过self.ff计算前馈神经网络层的输出,并将其与上一步得到的结果相加后再通过LayerNorm层归一化,最后返回结果。这个模块可以用于搭建Transformer的Encoder部分。
阅读全文