解读这段代码def __init__(self): super(Transformer, self).__init__() self.embedding = nn.Embedding(n_vocab, n_embd) self.pos_emb = nn.Parameter(torch.zeros(1, block_size, n_embd)) self.blocks = nn.ModuleList([Block(n_embd, n_heads) for _ in range(n_layers)]) self.norm = nn.LayerNorm(n_embd) self.fc = nn.Linear(n_embd, n_vocab)
时间: 2024-04-10 20:32:59 浏览: 207
这段代码是一个Transformer模型的初始化函数。首先,调用父类的初始化函数`super(Transformer, self).__init__()`来初始化Transformer类的父类。然后,定义了几个成员变量:
- `self.embedding`是一个词嵌入层,用于将输入的词索引转换为对应的词向量。
- `self.pos_emb`是位置嵌入层,用于表示输入序列中每个位置的信息。
- `self.blocks`是一个由多个`Block`模块组成的列表,每个`Block`模块都是Transformer模型中的一个编码器块。
- `self.norm`是一个层归一化层,用于对编码器块的输出进行归一化。
- `self.fc`是一个线性层,将编码器块的输出投影到词汇表大小的维度,用于生成最终的预测结果。
这段代码是Transformer模型的一部分,用于初始化模型的各个组件。
相关问题
class TransAm(nn.Module): def __init__(self,feature_size=250,num_layers=1,dropout=0.1): super(TransAm, self).__init__() self.model_type = 'Transformer' self.input_embedding = nn.Linear(1,feature_size) self.src_mask = None self.pos_encoder = PositionalEncoding(feature_size) self.encoder_layer = nn.TransformerEncoderLayer(d_model=feature_size, nhead=10, dropout=dropout) self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers) self.decoder = nn.Linear(feature_size,1) self.init_weights() 这段代码的作用 举例说明
这段代码定义了一个名为TransAm的PyTorch模型类,它是一个Transformer模型,用于将单个数字序列转换为输出值。具体来说,它包括以下组件:
- input_embedding: 一个线性层,用于将输入序列中的每个数字转换为一个一定维度的特征向量;
- src_mask: 用于遮挡输入序列中的某些位置,以防止模型在训练过程中使用到它们;
- pos_encoder: 位置编码层,用于为输入序列中的每个数字添加位置信息;
- encoder_layer: 编码器层,用于在位置编码后对输入序列进行编码,其中d_model表示输入和输出的特征向量维度,nhead表示多头注意力的头数,dropout表示随机失活率;
- transformer_encoder: 编码器,由多个encoder_layer组成,用于对整个输入序列进行编码;
- decoder: 一个线性层,用于将最后一个编码器层的输出转换为一个单一的输出值。
举例说明,如果我们想要使用这个模型来将一个长度为10的数字序列转换为一个输出值,可以这样做:
```
import torch
model = TransAm()
input_seq = torch.randn(10,1) # 生成一个10行1列的随机数字序列
output = model(input_seq) # 将序列输入到模型中,得到一个输出值
print(output)
```
import torch import torch.nn as nn import torch.nn.functional as F import torchvision.models as models import os class FCNTransformerNet(nn.Module): def __init__(self, num_classes): super(FCNTransformerNet, self).__init__() self.fcn_backbone = models.segmentation.fcn_resnet50(pretrained=True).backbone self.fcn_backbone.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.transformer_layers = nn.TransformerEncoderLayer(d_model=2048, nhead=8) self.transformer_encoder = nn.TransformerEncoder(self.transformer_layers, num_layers=6) self.classification_head = nn.Sequential( nn.Linear(2048, 512), nn.ReLU(), nn.Linear(512, num_classes) ) def forward(self, x): fcn_output = self.fcn_backbone(x)['out'] fcn_output = fcn_output.view(fcn_output.size(0), fcn_output.size(1), -1) fcn_output = fcn_output.permute(2, 0, 1) transformer_output = self.transformer_encoder(fcn_output) transformer_output = transformer_output.permute(1, 2, 0) transformer_output = transformer_output.contiguous().view(transformer_output.size(0), -1, 1, 1) output = self.classification_head(transformer_output) return output FCNTransformerNet net = FCNTransformerNet(num_classes=2) input_batch = torch.randn(4, 3, 512, 512) output_batch = net(input_batch) print(output_batch.size()) # Should print: torch.Size([4, 2, 512, 512]) 运行这段代码,并改错
在这段代码中,有几个问题需要进行修正。
首先,你定义了一个名为 `FCNTransformerNet` 的类,但是没有在代码末尾实例化这个类。你需要添加 `()` 来实例化该类,将其赋值给变量 `net`。
其次,你需要将 `FCNTransformerNet` 类的定义放在 `if __name__ == "__main__":` 条件语句内部,以确保它只在主程序中运行,而不是在模块导入时运行。
最后,你的代码中缺少了一些必要的导入语句。你需要导入 `torch`, `torch.nn` 和 `torchvision.models`。
下面是修改后的代码:
```python
import torch
import torch.nn as nn
import torchvision.models as models
class FCNTransformerNet(nn.Module):
def __init__(self, num_classes):
super(FCNTransformerNet, self).__init__()
self.fcn_backbone = models.segmentation.fcn_resnet50(pretrained=True).backbone
self.fcn_backbone.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.transformer_layers = nn.TransformerEncoderLayer(d_model=2048, nhead=8)
self.transformer_encoder = nn.TransformerEncoder(self.transformer_layers, num_layers=6)
self.classification_head = nn.Sequential(
nn.Linear(2048, 512),
nn.ReLU(),
nn.Linear(512, num_classes)
)
def forward(self, x):
fcn_output = self.fcn_backbone(x)['out']
fcn_output = fcn_output.view(fcn_output.size(0), fcn_output.size(1), -1)
fcn_output = fcn_output.permute(2, 0, 1)
transformer_output = self.transformer_encoder(fcn_output)
transformer_output = transformer_output.permute(1, 2, 0)
transformer_output = transformer_output.contiguous().view(transformer_output.size(0), -1, 1, 1)
output = self.classification_head(transformer_output)
return output
if __name__ == "__main__":
net = FCNTransformerNet(num_classes=2)
input_batch = torch.randn(4, 3, 512, 512)
output_batch = net(input_batch)
print(output_batch.size()) # Should print: torch.Size([4, 2, 512, 512])
```
请注意,这段代码假设你已经正确安装了 `torch` 和 `torchvision` 库。如果出现任何错误,你可能需要检查这些库的安装情况。
阅读全文