self.entity_vec.weight.data = normalize_emb(self.entity_vec.weight.data) self.relation_vec.weight.data = normalize_emb(self.relation_vec.weight.data) self.concept_vec.weight.data[:, :-1] = normalize_emb(self.concept_vec.weight.data[:, :-1]) self.concept_vec.weight.data[:, -1] = normalize_radius(self.concept_vec.weight.data[:, -1]) self.optimizer.zero_grad() for k in range(batchSize): i = random.randint(0, self.D.trainSize - 1) if i < len(self.D.fb_r): cut = 1 - epoch * self.args.hrt_cut / nepoch pairs[0].append(self.trainHLR(i, cut)) elif i < len(self.D.fb_r) + len(self.D.instanceOf): cut = 1 - epoch * self.args.ins_cut / nepoch pairs[1].append(self.trainInstanceOf(i, cut)) else: cut = 1 - epoch * self.args.sub_cut / nepoch pairs[2].append(self.trainSubClassOf(i, cut))

时间: 2023-06-16 16:02:03 浏览: 45
这段代码看起来像是在进行一些实体关系的训练,其中包括对实体向量、关系向量和概念向量进行归一化操作,然后进行随机选择训练数据并根据不同的类型进行训练。具体来说,如果选择的数据是三元组(头实体、关系、尾实体),那么就会调用 `trainHLR` 函数进行训练;如果选择的数据是实例关系(实例、类别),那么就会调用 `trainInstanceOf` 函数进行训练;如果选择的数据是子类关系(子类、父类),那么就会调用 `trainSubClassOf` 函数进行训练。训练过程中会根据当前的 epoch 和参数设置动态调整不同类型数据的采样比例。
相关问题

embedding_xavier_uniform_(self.entity_embeddings)解释

`embedding_xavier_uniform_()`是PyTorch中的一个函数,用于对参数进行Xavier均匀分布的初始化。在KGE模型中,实体和关系的嵌入向量都是模型的参数之一,需要进行初始化。`embedding_xavier_uniform_()`这个函数就是用于对这些向量进行初始化的。 具体来说,`embedding_xavier_uniform_()`方法会对输入的参数进行Xavier均匀分布的初始化。在KGE模型中,这个方法通常被用来对实体和关系的嵌入向量进行初始化。这个方法接受一个参数,即需要进行初始化的张量,它会直接修改这个张量的值。 在这个代码中,`embedding_xavier_uniform_(self.entity_embeddings)`就是用于对实体嵌入向量进行Xavier均匀分布的初始化的。这个方法会直接修改`self.entity_embeddings`这个张量的值,以便模型能够从合适的起点开始学习。

class Train(nn.Module): def __init__(self,args,dataset): super(Train, self).__init__() self.args = args self.D = dataset self.entity_vec = nn.Embedding(self.D.entity_num,args.emb_dim) self.concept_vec = nn.Embedding(self.D.concept_num,args.emb_dim+1) self.relation_vec = nn.Embedding(self.D.relation_num,args.emb_dim) self.optimizer = torch.optim.SGD(self.parameters(),lr=args.lr) nn.init.normal_(self.entity_vec.weight.data, 0.0, 1.0 / args.emb_dim) nn.init.normal_(self.relation_vec.weight.data, 0.0, 1.0 / args.emb_dim) nn.init.normal_(self.concept_vec.weight.data[:, :-1], 0.0, 1.0 / args.emb_dim) nn.init.uniform_(self.concept_vec.weight.data[:, -1], 0.0, 1.0)

这是一个使用 PyTorch 实现的知识图谱嵌入模型,包含三个嵌入层:entity_vec、concept_vec 和 relation_vec。使用 nn.Embedding 可以将实体、概念和关系映射到低维空间中的向量表示。其中,entity_vec 和 relation_vec 的权重矩阵使用正态分布进行初始化,而 concept_vec 的权重矩阵的前 n-1 列也使用正态分布进行初始化,最后一列使用均匀分布进行初始化。该模型还定义了一个 SGD 优化器用于训练模型。此外,该模型还包含一个 self.D 参数,用于传入数据集。

相关推荐

优化sql:SELECT we.organization_id ,we.wip_entity_id ,case when wl.line_id is null then we.wip_entity_name else '' end wip_entity_name ,we.primary_item_id ,mtt.transaction_type_name ,mmt.transaction_date ,bd.department_code ,mmt.inventory_item_id ,mmt.subinventory_code ,mta.reference_account ,br.resource_code ,lu2.meaning as line_type_name ,mta.base_transaction_value ,mta.cost_element_id ,flv.meaning as cost_element ,wdj.class_code job_type_code ,ml.meaning job_type_name FROM (select * from gerp.mtl_material_transactions where substr(transaction_date,1,7) >= '2023-06' and transaction_source_type_id = 5) mmt inner join gerp.wip_entities we on mmt.organization_id = we.organization_id inner join gerp.mtl_transaction_accounts mta on mta.transaction_source_id = we.wip_entity_id and mta.transaction_id = mmt.transaction_id and mta.transaction_source_type_id = 5 inner join gerp.mtl_transaction_types mtt on mtt.transaction_type_id = mmt.transaction_type_id inner join mfg_lookups lu2 on lu2.lookup_code = mta.accounting_line_type and lu2.lookup_type = 'CST_ACCOUNTING_LINE_TYPE' inner join gerp.mtl_system_items_b msi on msi.inventory_item_id = mmt.inventory_item_id and msi.organization_id = mta.organization_id left join gerp.bom_departments bd on bd.department_id = mmt.department_id left join gerp.bom_resources br on br.resource_id = mta.resource_id left join gerp.wip_lines wl on wl.line_id = mmt.repetitive_line_id left join gerp.wip_discrete_jobs wdj on wdj.wip_entity_id = mta.transaction_source_id left join gerp.fnd_lookup_values_vl flv on cast(mta.cost_element_id as string) = flv.lookup_code and flv.lookup_type = 'CST_COST_CODE_TYPE' left join mfg_lookups ml on ml.lookup_code = wdj.job_type and ml.lookup_type = 'WIP_DISCRETE_JOB' 。其中mmt,we,mta,msi,wdj数据量很大

最新推荐

recommend-type

Code_First_使用Entity._Framework编程.docx

Code_First_使用Entity._Framework编程,用案例详细的讲述了EF中的基础知识,重点是Code_First的开发模式
recommend-type

Android程序报错程序包org.apache.http不存在问题的解决方法

主要介绍了Android程序报错"程序包org.apache.http不存在——Android 6.0已经不支持HttpClient" 问题的解决方法,感兴趣的小伙伴们可以参考一下
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

已知n个人(以编号0,1,2,3...n-1分别表示)围坐在一张圆桌周围。从编号为0的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m+1的那个人又出列(每次报数值加1);依此规律重复下去,直到圆桌周围的人全部出列。用递归方法解决

这个问题可以使用递归方法解决。下面是一个思路: 1. 定义一个函数,接收三个参数:n、m、i,表示还剩下n个人,每次数到m时出列,当前报数的人是i; 2. 如果n=1,返回i,即最后留下的那个人的编号; 3. 否则,计算出下一个出列的人的编号j,通过递归调用函数解决n-1个人的问题,其结果为k; 4. 如果k < j,即当前i之后出列的人的编号为k,需要将k转换为在i之前出列的编号,返回值为 k+(n-1); 5. 如果k>=j,即当前i之后出列的人的编号为k,返回值为 k-(j-1); 下面是对应的Python代码: ```python def josephus(n, m, i):