贝叶斯优化bp神经网络python代码
时间: 2024-10-12 10:04:07 浏览: 43
根据提供的引用内容,我们可以得知该项目使用基于贝叶斯优化器(Bayes_opt)优化BP神经网络分类和回归算法来解决分类和回归问题,并且使用train_test_split()方法按照80%训练集、20%测试集进行划分。但是,没有提供具体的Python代码实现。
因此,我们可以提供一些基于贝叶斯优化器优化BP神经网络的Python代码实现的参考资料,供您参考:
1. 基于贝叶斯优化器优化BP神经网络分类算法的Python代码实现:
```python
from bayes_opt import BayesianOptimization
from sklearn.neural_network import MLPClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import cross_val_score
# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target
# 定义分类器
def mlp_cv(hidden_layer_sizes, alpha):
clf = MLPClassifier(hidden_layer_sizes=int(hidden_layer_sizes), alpha=alpha, random_state=0)
scores = cross_val_score(clf, X, y, cv=5)
return scores.mean()
# 定义超参数搜索空间
pbounds = {'hidden_layer_sizes': (1, 10), 'alpha': (0.0001, 0.1)}
# 初始化贝叶斯优化器
optimizer = BayesianOptimization(
f=mlp_cv,
pbounds=pbounds,
random_state=0,
)
# 进行优化
optimizer.maximize(init_points=5, n_iter=10)
# 输出最优超参数
print(optimizer.max)
```
2. 基于贝叶斯优化器优化BP神经网络回归算法的Python代码实现:
```python
from bayes_opt import BayesianOptimization
from sklearn.neural_network import MLPRegressor
from sklearn.datasets import load_boston
from sklearn.model_selection import cross_val_score
# 加载数据集
boston = load_boston()
X = boston.data
y = boston.target
# 定义回归器
def mlp_cv(hidden_layer_sizes, alpha):
clf = MLPRegressor(hidden_layer_sizes=int(hidden_layer_sizes), alpha=alpha, random_state=0)
scores = cross_val_score(clf, X, y, cv=5, scoring='neg_mean_squared_error')
return scores.mean()
# 定义超参数搜索空间
pbounds = {'hidden_layer_sizes': (1, 10), 'alpha': (0.0001, 0.1)}
# 初始化贝叶斯优化器
optimizer = BayesianOptimization(
f=mlp_cv,
pbounds=pbounds,
random_state=0,
)
# 进行优化
optimizer.maximize(init_points=5, n_iter=10)
# 输出最优超参数
print(optimizer.max)
```
阅读全文