残差网络tensorflow代码
时间: 2023-08-11 12:07:13 浏览: 185
当谈到残差网络的实现,TensorFlow提供了一个方便的函数`tf.keras.layers.ResNet`。以下是一个简单的例子,展示了如何使用TensorFlow构建一个残差网络:
```python
import tensorflow as tf
from tensorflow.keras import layers
# 定义残差块
class ResidualBlock(tf.keras.Model):
def __init__(self, filters, strides=1, activation='relu', **kwargs):
super(ResidualBlock, self).__init__(**kwargs)
self.activation = tf.keras.activations.get(activation)
self.main_layers = [
layers.Conv2D(filters, 3, strides=strides, padding='same', use_bias=False),
layers.BatchNormalization(),
self.activation,
layers.Conv2D(filters, 3, strides=1, padding='same', use_bias=False),
layers.BatchNormalization()
]
self.skip_layers = []
if strides > 1:
self.skip_layers = [
layers.Conv2D(filters, 1, strides=strides, padding='same', use_bias=False),
layers.BatchNormalization()
]
def call(self, inputs):
x = inputs
for layer in self.main_layers:
x = layer(x)
skip_x = inputs
for layer in self.skip_layers:
skip_x = layer(skip_x)
return self.activation(x + skip_x)
# 定义残差网络
class ResNet(tf.keras.Model):
def __init__(self, num_classes, block_sizes=[2, 2, 2, 2], **kwargs):
super(ResNet, self).__init__(**kwargs)
self.conv1 = layers.Conv2D(64, 7, strides=2, padding='same', use_bias=False)
self.bn1 = layers.BatchNormalization()
self.activation = tf.keras.activations.relu
self.max_pool = layers.MaxPooling2D(pool_size=3, strides=2, padding='same')
self.res_blocks = []
for block_size in block_sizes:
self.res_blocks.append(self.make_res_blocks(64, block_size))
self.res_blocks.append(self.make_res_blocks(128, 1))
self.res_blocks.append(self.make_res_blocks(256, 1))
self.res_blocks.append(self.make_res_blocks(512, 1))
self.global_avg_pool = layers.GlobalAveragePooling2D()
self.fc = layers.Dense(num_classes)
def call(self, inputs):
x = self.conv1(inputs)
x = self.bn1(x)
x = self.activation(x)
x = self.max_pool(x)
for res_block in self.res_blocks:
x = res_block(x)
x = self.global_avg_pool(x)
x = self.fc(x)
return x
def make_res_blocks(self, filters, num_blocks):
res_blocks = tf.keras.Sequential()
for _ in range(num_blocks):
res_blocks.add(ResidualBlock(filters))
return res_blocks
# 创建一个ResNet模型实例
model = ResNet(num_classes=10)
# 编译模型
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
```
这只是一个简单的例子,你可以根据自己的需求进行修改和扩展。
阅读全文