c++ bsdiff算法

时间: 2023-10-23 19:02:42 浏览: 80
bsdiff算法是一种用于生成两个不同版本文件之间的差异文件的算法。它由Colin Percival创建,并专门用于在软件包管理系统中进行软件更新。 bsdiff算法的核心思想是利用两个不同版本文件之间的相似之处来创建一个小巧的差异文件。首先,它对旧版本文件和新版本文件进行了详细的分析,找出了它们之间的差异。然后,它将这些差异信息用一种高效的方式编码,并生成一个二进制差异文件。 这个差异文件只包含了两个版本文件之间的实际差异,而没有包含完整的新版本文件。因此,它相对于原始文件和新文件的尺寸要小很多。这种压缩的差异文件可以更加高效地传输、存储和处理。 为了将差异文件应用于旧版本文件,需要使用bspatch算法。bspatch算法根据差异文件和旧版本文件,重建出新版本文件。它通过读取差异文件中的指令和数据,并将其应用在旧版本文件上来完成更新的操作。最终,得到的新版本文件与原始的新版本文件完全相同。 总的来说,bsdiff算法在软件更新领域具有重要的应用价值。它能够以较小的开销生成差异文件,从而节省了带宽和存储空间的消耗。同时,它也提供了一种更简单、更高效的方式来升级软件,提升了用户的体验。
相关问题

用C++实现bsdiff算法。

bsdiff算法是一种用于生成两个二进文件之间差异的算法,常用于软件升级和增量更新。下面是一个C++实现的示例代码: ```c++ #include <fstream> #include <vector> typedef unsigned char uint8_t; typedef unsigned int uint32_t; typedef unsigned long long uint64_t; const uint64_t MAX_LEN = 0xFFFFFFFFFFFFFFFF; class bsdiff { public: static bool diff(const char* old_file, const char* new_file, const char* patch_file); static bool patch(const char* old_file, const char* new_file, const char* patch_file); private: static void split(uint64_t* sa, uint8_t* old_data, uint64_t old_size); static uint64_t search(uint8_t* new_data, uint64_t new_size, uint8_t* old_data, uint64_t old_size, uint64_t pos, uint64_t len, uint64_t* offset); static void encode(std::ofstream& fout, uint64_t x); static void copy(std::ofstream& fout, uint8_t* data, uint64_t size); }; bool bsdiff::diff(const char* old_file, const char* new_file, const char* patch_file) { std::ifstream old_f(old_file, std::ios::binary); if (!old_f) return false; old_f.seekg(0, std::ios::end); uint64_t old_size = old_f.tellg(); old_f.seekg(0, std::ios::beg); std::vector<uint8_t> old_data(old_size); old_f.read(reinterpret_cast<char*>(&old_data[0]), old_size); old_f.close(); std::ifstream new_f(new_file, std::ios::binary); if (!new_f) return false; new_f.seekg(0, std::ios::end); uint64_t new_size = new_f.tellg(); new_f.seekg(0, std::ios::beg); std::vector<uint8_t> new_data(new_size); new_f.read(reinterpret_cast<char*>(&new_data[0]), new_size); new_f.close(); std::ofstream patch_f(patch_file, std::ios::binary); if (!patch_f) return false; uint64_t* sa = new uint64_t[(old_size + 1) / 2]; split(sa, &old_data[0], old_size); uint64_t i = 0; uint64_t len = 0; uint64_t pos = 0; uint64_t last_offset = 0; while (i < new_size) { uint64_t offset = 0; pos = search(&new_data[0], new_size, &old_data[0], old_size, sa[i], old_size - sa[i], &offset); if (i + pos - last_offset >= MAX_LEN || pos == old_size) { encode(patch_f, i - last_offset); encode(patch_f, pos - last_offset); copy(patch_f, &new_data[i], pos - last_offset); last_offset = pos; } i += pos - sa[i]; } encode(patch_f, i - last_offset); encode(patch_f, new_size - last_offset); copy(patch_f, &new_data[i], new_size - last_offset); delete[] sa; patch_f.close(); return true; } bool bsdiff::patch(const char* old_file, const char* new_file, const char* patch_file) { std::ifstream old_f(old_file, std::ios::binary); if (!old_f) return false; old_f.seekg(0, std::ios::end); uint64_t old_size = old_f.tellg(); old_f.seekg(0, std::ios::beg); std::vector<uint8_t> old_data(old_size); old_f.read(reinterpret_cast<char*>(&old_data[0]), old_size); old_f.close(); std::ifstream patch_f(patch_file, std::ios::binary); if (!patch_f) return false; std::ofstream new_f(new_file, std::ios::binary); if (!new_f) return false; uint64_t old_pos = 0; uint64_t new_pos = 0; uint64_t cmd = 0; uint64_t len = 0; while (patch_f) { cmd = 0; len = 0; patch_f.read(reinterpret_cast<char*>(&cmd), sizeof(uint64_t)); patch_f.read(reinterpret_cast<char*>(&len), sizeof(uint64_t)); if (patch_f.eof()) break; if (cmd > 0) { std::vector<uint8_t> diff_data(len); patch_f.read(reinterpret_cast<char*>(&diff_data[0]), len); for (uint64_t i = 0; i < len; i++) { new_f.put(old_data[old_pos + i] + diff_data[i]); } old_pos += len; new_pos += len; } else { new_pos += len; } } patch_f.close(); new_f.close(); return true; } void bsdiff::split(uint64_t* sa, uint8_t* old_data, uint64_t old_size) { uint64_t i = 0; uint64_t j = 0; uint64_t k = 0; uint64_t x = 0; uint64_t y = 0; uint64_t tmp = 0; uint64_t* v = new uint64_t[old_size]; for (i = 0; i < old_size; i++) { v[i] = i; } for (i = 0; i < old_size; i++) { sa[i] = v[0]; v[0] = v[1]; x = v[1]; for (j = 1; j < old_size - i - 1; j++) { y = v[j + 1]; if (old_data[sa[i] + j] > old_data[x + j]) { v[j] = x; x = y; } else if (old_data[sa[i] + j] > old_data[y + j]) { v[j] = sa[i] + j; x = y; } else { v[j] = y; } } v[old_size - i - 2] = x; } for (i = 0; i < old_size; i++) { sa[v[i]] = i; } delete[] v; } uint64_t bsdiff::search(uint8_t* new_data, uint64_t new_size, uint8_t* old_data, uint64_t old_size, uint64_t pos, uint64_t len, uint64_t* offset) { uint64_t start = 0; uint64_t end = old_size; uint64_t x = 0; uint64_t y = 0; uint64_t last = 0; while (start < end) { x = start + (end - start) / 2; last = (x > *offset) ? x - *offset : *offset - x; y = 0; while (y < len && x + y < old_size && new_data[pos + y] == old_data[x + y]) { y++; } if (y == len) { *offset = x; return x - *offset + len; } if (y > last) { end = x; } else { start = x + 1; } } return 0; } void bsdiff::encode(std::ofstream& fout, uint64_t x) { uint8_t buf[10]; uint32_t i = 0; while (x >= 0x80) { buf[i++] = (x & 0x7F) | 0x80; x >>= 7; } buf[i++] = x & 0x7F; for (uint32_t j = 0; j < i; j++) { fout.put(buf[j]); } } void bsdiff::copy(std::ofstream& fout, uint8_t* data, uint64_t size) { for (uint64_t i = 0; i < size; i++) { fout.put(data[i]); } } ``` 该实现使用了STL中的vector和fstream库,代码较为简洁易读。其中,split函数用于计算old_data数组的后缀数组,search函数用于在old_data数组中查找与new_data数组匹配的最长子串。encode和copy函数用于将数据写入输出流中。diff函数用于生成差异文件,patch函数用于根据差异文件生成新文件。

C语言实现bsdiff算法

bsdiff算法是一种用于生成增量补丁的算法,它可以快速地生成一个旧版本和新版本之间的差异文件。下面是一个简单的C语言实现示例: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <bzlib.h> #define MIN(x, y) ((x) < (y) ? (x) : (y)) // 定义一个结构体,用于保存文件的内容和长度 typedef struct { char *data; off_t length; } file_data; // 读取文件内容到file_data结构体中 file_data read_file(const char *filename) { file_data fd = {NULL, 0}; FILE *fp = fopen(filename, "rb"); if (fp == NULL) { fprintf(stderr, "Unable to open file: %s\n", filename); return fd; } fseek(fp, 0, SEEK_END); fd.length = ftell(fp); rewind(fp); fd.data = (char *)malloc(fd.length); if (fd.data == NULL) { fclose(fp); return fd; } fread(fd.data, fd.length, 1, fp); fclose(fp); return fd; } // 计算文件的差异 int bsdiff(const char *old_filename, const char *new_filename, const char *patch_filename) { file_data old_file = read_file(old_filename); if (old_file.data == NULL || old_file.length == 0) { fprintf(stderr, "Unable to read old file\n"); return -1; } file_data new_file = read_file(new_filename); if (new_file.data == NULL || new_file.length == 0) { free(old_file.data); fprintf(stderr, "Unable to read new file\n"); return -1; } FILE *fp = fopen(patch_filename, "wb"); if (fp == NULL) { free(old_file.data); free(new_file.data); fprintf(stderr, "Unable to create patch file\n"); return -1; } // 写入文件头 fprintf(fp, "BSDIFF40"); off_t newsize = new_file.length; fwrite(&newsize, sizeof(off_t), 1, fp); // 分配内存 char *I = (char *)malloc((old_file.length + 1) * sizeof(char)); if (I == NULL) { fclose(fp); free(old_file.data); free(new_file.data); fprintf(stderr, "Memory allocation error\n"); return -1; } char *V = (char *)malloc((old_file.length + 1) * sizeof(char)); if (V == NULL) { fclose(fp); free(old_file.data); free(new_file.data); free(I); fprintf(stderr, "Memory allocation error\n"); return -1; } // 生成差异 off_t scan = 0; off_t len = 0; off_t lastscan = 0; off_t lastpos = 0; off_t oldsize = old_file.length; off_t scsc = 0; off_t overlap = 0; off_t Sf, lenf, Sb, lenb; off_t *pos = (off_t *)malloc((newsize + 1) * sizeof(off_t)); if (pos == NULL) { fclose(fp); free(old_file.data); free(new_file.data); free(I); free(V); fprintf(stderr, "Memory allocation error\n"); return -1; } off_t i; for (i = 0; i < newsize; i++) { pos[i] = -1; } // 计算V和I数组 for (scan = 0; scan < newsize; scan++) { char c = new_file.data[scan]; len = 0; for (i = 0; scan + i < newsize; i++) { if (new_file.data[scan + i] == c) { len++; } else { break; } } if (len >= 8 && scan + len < newsize) { // 计算hash值 unsigned int h = 0; for (i = 0; i < len; i++) { h = h * 31 + new_file.data[scan + i]; } // 将hash值添加到pos数组中 for (i = MIN(oldsize - 1, h % (oldsize - 1));; i--) { if (pos[i] == -1) { pos[i] = h % (oldsize - 1); break; } if (i == 0) { i = oldsize; } } } } // 计算V和I数组 i = 0; // V[0] = 0; for (i = 0; i < oldsize; i++) { V[i] = 0; } for (i = 0; i < newsize; i++) { char c = new_file.data[i]; len = 0; for (off_t j = i; j < newsize; j++) { if (new_file.data[j] == c) { len++; } else { break; } } if (len >= 8 && i + len < newsize) { unsigned int h = 0; for (off_t j = 0; j < len; j++) { h = h * 31 + new_file.data[i + j]; } off_t posn = pos[h % (oldsize - 1)]; if (posn != -1) { off_t delta = i - posn; off_t j = 0; while (i + j < newsize && posn + j < oldsize && new_file.data[i + j] == old_file.data[posn + j]) { j++; } if (j > overlap) { Sf = i; lenf = j - overlap; Sb = posn + j; lenb = j - overlap; overlap = j; } if (j == overlap && i - posn < delta) { Sf = i; lenf = j - overlap; Sb = posn + j; lenb = delta - overlap; overlap = j; } } } V[i] = overlap; I[i] = Sf; } free(pos); // 写入差异 off_t scanpos = 0; off_t lenpos = 0; fwrite(&lenf, sizeof(off_t), 1, fp); fwrite(&lenb, sizeof(off_t), 1, fp); fwrite(&Sf, sizeof(off_t), 1, fp); fwrite(&Sb, sizeof(off_t), 1, fp); fwrite(&new_file.data[0], lenf, 1, fp); for (scanpos = lenf, lenpos = lenf; scanpos < newsize;) { off_t i = 0, j = 0; for (i = 0; scanpos + i < newsize; i++) { j = I[scanpos + i] + lenf; if (scanpos + i + lenpos < newsize && j + lenpos < oldsize && new_file.data[scanpos + i + lenpos] == old_file.data[j + lenpos]) { continue; } break; } if (i != 0) { fwrite(&i, sizeof(off_t), 1, fp); } else { j = scanpos + lenpos; for (i = lenpos; i < newsize - scanpos; i++) { if (V[scanpos + i] >= j - scanpos) { j = i + scanpos; } } i = j - scanpos; fwrite(&i, sizeof(off_t), 1, fp); } fwrite(&new_file.data[scanpos], i, 1, fp); for (off_t k = 0; k < i; k++) { if (scanpos + k < newsize) { V[scanpos + k] = V[scanpos + k] - i; } } scanpos += i; lenpos = i; } // 释放内存 free(I); free(V); free(old_file.data); free(new_file.data); fclose(fp); return 0; } int main(int argc, char *argv[]) { if (argc != 4) { fprintf(stderr, "Usage: %s oldfile newfile patchfile\n", argv[0]); return -1; } if (bsdiff(argv[1], argv[2], argv[3]) != 0) { return -1; } return 0; } ``` 需要注意的是,这个实现只是一个简单的示例,可能不适用于所有情况。在实际应用中,还需要进行更多的测试和优化。

相关推荐

最新推荐

recommend-type

基于STM32单片机的差分升级(增量升级)算法移植手册V1.3, STM32+BsDiff+LZ77+CRC32

应用背景 随着目前物联网,车联网,智能设备的增多,需要远程升级设备程序的场景增多,以往的IAP升级和OTA升级都是整包...本应用的底层采用开源的差分算法BsDiff和无损压缩算法LZ77,全部使用C语言编写,支持跨平台移植,接
recommend-type

355ssm_mysql_jsp 医院病历管理系统.zip(可运行源码+sql文件+文档)

本系统前台使用的是HTML技术,后台使用JSP语言和MySQL数据库开发,为各位病人及医务工作者提供了医院公告查询、医生信息查看、患者病情管理等多种功能,让人们不需要再通过拿着自己的纸质病历前往医院就可以进行了历史就诊信息的查看,在极大地满足病人们进行在线健康管理的需求的同时,还在首页中添加了X光片子的查看等功能,让病人用户们可以自行进行X光片子的查看。 本系统共分为两个角色,管理员用户负责各个模块的数据管理,比如可以添加和删除医生和患者信息、病历信息等,而患者用户可以在前台界面详细地了解医院的公告信息和各科室的信息,还可以进行在线的病历信息录入和X光片信息的查看。医生用户可以对自己的个人资料进行修改,还可以对病人的信息及病历信息进行查看和管理。 关键词:病历管理;JSP;HTML;MYSQL
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】使用Seaborn和Plotly进行数据可视化项目

![【实战演练】使用Seaborn和Plotly进行数据可视化项目](https://ask.qcloudimg.com/http-save/yehe-5669851/lifus0nfda.jpeg) # 1. 数据可视化的基础** 数据可视化是指将数据转换为图形或图表,以帮助人们理解和解释数据。它是一种强大的工具,可以揭示数据中的模式、趋势和异常情况,从而帮助人们做出更好的决策。 数据可视化有许多不同的类型,包括条形图、折线图、散点图和饼图。每种类型都有其独特的优点和缺点,具体选择哪种类型取决于数据类型和要传达的信息。 在创建数据可视化时,重要的是要考虑以下因素: * **受众:**
recommend-type

Python的六种数据类型

Python是一种动态类型的高级编程语言,它的六种基本数据类型包括: 1. **数字类型(Numeric Types)**:主要有整型(int)、浮点型(float)、复数型(complex)。整型用于表示整数值,浮点型用于存储小数,复数型用于处理复数。 2. **字符串类型(String Type)**:用单引号('')或双引号("")包围的文本序列,用来存储文本数据。 3. **布尔类型(Boolean Type)**:只有两个值,True和False,表示逻辑判断的结果。 4. **列表类型(List Type)**:有序的可变序列,可以包含不同类型的元素。 5. **元组类型