最大公约数和最小公倍数python
时间: 2023-11-16 17:00:23 浏览: 108
最大公约数和最小公倍数是数学中的基本概念,可以用Python编写程序来求解。下面是一个示例程序:
```python
def gcd(a, b):
while b:
a, b = b, a % b
return a
def lcm(a, b):
return a * b // gcd(a, b)
a = int(input("请输入一个整数:"))
b = int(input("请输入另一个整数:"))
print("%d与%d的最大公约数是%d" % (a, b, gcd(a, b)))
print("%d与%d的最小公倍数是%d" % (a, b, lcm(a, b)))
```
运行结果如下:
```
请输入一个整数:12
请输入另一个整数:18
12与18的最大公约数是6
12与18的最小公倍数是36
```
相关问题
最大公约数和最小公倍数Python
最大公约数(GCD)和最小公倍数(LCM)是两个常见的数学概念,可以通过Python进行计算。
最大公约数是指能够整除两个或多个整数的最大正整数。Python中可以使用math模块中的gcd函数来计算最大公约数。以下是一个示例代码:
```python
import math
a = 24
b = 36
gcd = math.gcd(a, b)
print("最大公约数:", gcd)
```
最小公倍数是指能够被两个或多个整数整除的最小正整数。Python中可以通过计算两个数的乘积除以它们的最大公约数来计算最小公倍数。以下是一个示例代码:
```python
import math
a = 24
b = 36
lcm = (a * b) // math.gcd(a, b)
print("最小公倍数:", lcm)
```
求最大公约数和最小公倍数python
最大公约数可以使用math库中的gcd()函数来求,示例代码如下:
```python
import math
x = 48
y = 36
print(math.gcd(x, y))
```
最小公倍数可以使用lcm()函数来求,示例代码如下:
```python
import math
x = 48
y = 36
print(x*y//math.gcd(x, y))
```
也可以使用自定义函数来求,示例代码如下:
```python
def gcd(x, y):
while y:
x, y = y, x % y
return x
def lcm(x, y):
return x * y // gcd(x, y)
x = 48
y = 36
print(gcd(x, y))
print(lcm(x, y))
```
阅读全文