R语言 读取csv文件,绘制柱状图,颜色设置为"#9EC4BE",横坐标为mean_dropout_loss, 纵坐标为variable, 纵轴至上而下按照mean_dropout_loss数值大小进行排序,保存为png

时间: 2024-10-10 20:08:50 浏览: 27
在R语言中,你可以使用`read.csv()`函数来读取CSV文件,`ggplot2`库来创建和定制图形,特别是柱状图。以下是完成上述需求的步骤: 1. 首先,安装并加载必要的库,如果尚未安装,可以运行: ```R install.packages("ggplot2") # 如果没装 library(ggplot2) ``` 2. 使用`read.csv()`读取CSV文件,假设文件名为"data.csv",并将其存储为dataframe: ```R df <- read.csv("data.csv") ``` 3. 接下来,计算`mean_dropout_loss`列的平均值,并将结果赋给新的变量,比如`sorted_df`: ```R sorted_df <- df[order(df$mean_dropout_loss),] # 按照mean_dropout_loss升序排列 ``` 4. 然后使用`geom_bar()`创建柱状图,颜色设置为"#9EC4BE": ```R p <- ggplot(sorted_df, aes(x = mean_dropout_loss, y = variable, fill = variable)) + geom_bar(stat = "identity", position = "dodge") + # 使用position="dodge"区分每个变量 scale_fill_manual(values = "#9EC4BE") + # 设置填充色 theme_minimal() + # 选择简洁主题 labs(x = "mean_dropout_loss", y = "") # x轴标签 ``` 5. 最后,保存图表为PNG格式: ```R ggsave("output.png", p, width = 10, height = 6, dpi = 300) # 根据需要调整宽度、高度和分辨率 ``` 如果你的数据不在内存中直接操作,或者需要进一步处理数据后再画图,记得在相应的步骤里做相应调整。
阅读全文

相关推荐

import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Dense, LSTM, Dropout from keras.callbacks import EarlyStopping # 读取csv文件 data = pd.read_csv('3c_left_1-6.csv') # 将数据转换为numpy数组 data = np.array(data) data = data.reshape((data.shape[0], 1, data.shape[1])) # 获取数据的维度信息 n_samples, n_timesteps, n_features = data.shape # 定义模型 model = Sequential() model.add(LSTM(64, input_shape=(n_timesteps, n_features), return_sequences=True)) model.add(Dropout(0.2)) # 添加Dropout层 model.add(Dense(n_features)) # 编译模型 model.compile(loss='mse', optimizer='adam') # 定义EarlyStopping回调函数 early_stopping = EarlyStopping(monitor='val_loss', min_delta=0.001, patience=5, mode='min', verbose=1) # 训练模型 model.fit(data, data, epochs=100, batch_size=32, validation_split=0.2, callbacks=[early_stopping]) # 对数据进行去噪 denoised_data = model.predict(data) # 计算去噪后的SNR,MSE,PSNR snr = np.mean(np.power(data, 2)) / np.mean(np.power(data - denoised_data, 2)) mse = np.mean(np.power(data - denoised_data, 2)) psnr = 10 * np.log10((np.power(data.max(), 2) / mse)) print("Signal-to-Noise Ratio (SNR): {:.2f} dB".format(snr)) print("Mean Squared Error (MSE): {:.2f}".format(mse)) print("Peak Signal-to-Noise Ratio (PSNR): {:.2f} dB".format(psnr)) # 将结果保存为csv文件 data = {'SNR': [snr], 'MSE': [mse], 'PSNR': [psnr]} df = pd.DataFrame(data) df.to_csv('indicator_lstm.csv', index=False) denoised_data = pd.DataFrame(denoised_data.reshape(n_samples, n_timesteps * n_features)) denoised_data.to_csv('denoised_data_lstm.csv', index=False)增加dropout的比例

解释这段话class GRUModel(nn.Module): def init(self, input_size, hidden_size, output_size, num_layers, dropout=0.5): super(GRUModel, self).init() self.hidden_size = hidden_size self.num_layers = num_layers self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True, dropout=dropout) self.attention = Attention(hidden_size) self.fc = nn.Linear(hidden_size, output_size) self.fc1=nn.Linear(hidden_size,256) self.fc2=nn.Linear(256,1)#这两句是加的 self.dropout = nn.Dropout(dropout) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size) out, hidden = self.gru(x, h0) out, attention_weights = self.attention(hidden[-1], out) out = self.dropout(out) out = self.fc(out) return out def fit(epoch, model, trainloader, testloader): total = 0 running_loss = 0 train_bar = tqdm(train_dl) # 形成进度条(自己加的) model.train() #告诉模型处于训练状态,dropout层发挥作用 for x, y in trainloader: if torch.cuda.is_available(): x, y = x.to('cuda'), y.to('cuda') y_pred = model(x) #y的预测值 loss = loss_fn(y_pred, y) #计算损失,将预测值与真实值传进去,自动计算 optimizer.zero_grad() #将之前的梯度清零 loss.backward() #根据损失计算梯度,进行一次反向传播。 optimizer.step() #根据梯度进行优化 with torch.no_grad(): total += y.size(0) running_loss += loss.item() #计算所有批次的损失之和 exp_lr_scheduler.step() epoch_loss = running_loss / len(trainloader.dataset) test_total = 0 test_running_loss = 0 model.eval() #告诉模型处于预测状态,dropout层不发挥作用 with torch.no_grad(): for x, y in testloader: if torch.cuda.is_available(): x, y = x.to('cuda'), y.to('cuda') y_pred = model(x) loss = loss_fn(y_pred, y) test_total += y.size(0) test_running_loss += loss.item() epoch_test_loss = test_running_loss / len(testloader.dataset) print('epoch: ', epoch, #迭代次数 'loss: ', round(epoch_loss, 6), #保留小数点3位数 'test_loss: ', round(epoch_test_loss, 4) ) return epoch_loss,epoch_test_loss

纠正代码:trainsets = pd.read_csv('/Users/zhangxinyu/Desktop/trainsets82.csv') testsets = pd.read_csv('/Users/zhangxinyu/Desktop/testsets82.csv') y_train_forced_turnover_nolimited = trainsets['m3_forced_turnover_nolimited'] X_train = trainsets.drop(['m3_P_perf_ind_all_1','m3_P_perf_ind_all_2','m3_P_perf_ind_all_3','m3_P_perf_ind_allind_1',\ 'm3_P_perf_ind_allind_2','m3_P_perf_ind_allind_3','m3_P_perf_ind_year_1','m3_P_perf_ind_year_2',\ 'm3_P_perf_ind_year_3','m3_forced_turnover_nolimited','m3_forced_turnover_3mon',\ 'm3_forced_turnover_6mon','m3_forced_turnover_1year','m3_forced_turnover_3year',\ 'm3_forced_turnover_5year','m3_forced_turnover_10year',\ 'CEOid','CEO_turnover_N','year','Firmid','appo_year'],axis=1) y_test_forced_turnover_nolimited = testsets['m3_forced_turnover_nolimited'] X_test = testsets.drop(['m3_P_perf_ind_all_1','m3_P_perf_ind_all_2','m3_P_perf_ind_all_3','m3_P_perf_ind_allind_1',\ 'm3_P_perf_ind_allind_2','m3_P_perf_ind_allind_3','m3_P_perf_ind_year_1','m3_P_perf_ind_year_2',\ 'm3_P_perf_ind_year_3','m3_forced_turnover_nolimited','m3_forced_turnover_3mon',\ 'm3_forced_turnover_6mon','m3_forced_turnover_1year','m3_forced_turnover_3year',\ 'm3_forced_turnover_5year','m3_forced_turnover_10year',\ 'CEOid','CEO_turnover_N','year','Firmid','appo_year'],axis=1) # 定义模型参数 input_dim = X.shape[1] epochs = 100 batch_size = 32 lr = 0.001 dropout_rate = 0.5 # 定义模型结构 def create_model(): model = Sequential() model.add(Dense(64, input_dim=input_dim, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(32, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(1, activation='sigmoid')) optimizer = Adam(lr=lr) model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model # 5折交叉验证 kf = KFold(n_splits=5, shuffle=True, random_state=42) cv_scores = [] for train_index, test_index in kf.split(X): # 划分训练集和验证集 X_train, X_val = X[train_index], X[test_index] y_train, y_val = y[train_index], y[test_index] # 创建模型 model = create_model() # 定义早停策略 early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1) # 训练模型 model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=epochs, batch_size=batch_size, callbacks=[early_stopping], verbose=1) # 预测验证集 y_pred = model.predict(X_val) # 计算AUC指标 auc = roc_auc_score(y_val, y_pred) cv_scores.append(auc) # 输出交叉验证结果 print('CV AUC:', np.mean(cv_scores)) # 在全量数据上重新训练模型 model = create_model() model.fit(X, y, epochs=epochs, batch_size=batch_size, verbose=1)

import numpy as npimport pandas as pdfrom sklearn.preprocessing import MinMaxScalerfrom keras.models import Sequentialfrom keras.layers import Dense, Dropout, LSTMdf = pd.read_csv('AAPL.csv') # 载入股票数据# 数据预处理scaler = MinMaxScaler(feature_range=(0, 1))scaled_data = scaler.fit_transform(df['Close'].values.reshape(-1, 1))# 训练集和测试集划分prediction_days = 30x_train = []y_train = []for x in range(prediction_days, len(scaled_data)): x_train.append(scaled_data[x-prediction_days:x, 0]) y_train.append(scaled_data[x, 0])x_train, y_train = np.array(x_train), np.array(y_train)x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))# 构建BP神经网络模型model = Sequential()model.add(LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1], 1)))model.add(Dropout(0.2))model.add(LSTM(units=50, return_sequences=True))model.add(Dropout(0.2))model.add(LSTM(units=50))model.add(Dropout(0.2))model.add(Dense(units=1))model.compile(optimizer='adam', loss='mean_squared_error')model.fit(x_train, y_train, epochs=25, batch_size=32)# 使用模型进行预测test_start = len(scaled_data) - prediction_daystest_data = scaled_data[test_start:, :]x_test = []for x in range(prediction_days, len(test_data)): x_test.append(test_data[x-prediction_days:x, 0])x_test = np.array(x_test)x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))predicted_price = model.predict(x_test)predicted_price = scaler.inverse_transform(predicted_price)# 可视化预测结果import matplotlib.pyplot as pltplt.plot(df['Close'].values)plt.plot(range(test_start, len(df)), predicted_price)plt.show()介绍

最新推荐

recommend-type

keras绘制acc和loss曲线图实例

本文将详细介绍如何在Keras中绘制训练和验证过程中的损失(loss)和准确率(accuracy)曲线图。 首先,我们需要导入必要的库,包括Keras、Numpy、Matplotlib等。`__future__`模块确保Python 2代码兼容Python 3。在代码...
recommend-type

pytorch 状态字典:state_dict使用详解

需要注意的是,加载后应该调用`model.eval()`将模型置于评估模式,因为在训练和评估模式下,像Dropout和BatchNorm这样的层会有不同的行为。 除了保存和加载模型的参数,你还可以直接保存整个模型对象,使用`torch....
recommend-type

Pytorch提取模型特征向量保存至csv的例子

在PyTorch中,提取模型特征向量并将其保存到CSV文件是一项常见的任务,尤其是在进行图像分类、物体检测或图像分析等应用时。本例子主要展示了如何利用预训练的模型,如ResNet,来提取图像的特征,并将这些特征向量...
recommend-type

Tensorflow中的dropout的使用方法

为了缓解这个问题,Geoffrey Hinton等人提出了一种名为dropout的技术,它在训练过程中随机“丢弃”一部分神经元,以避免模型过度依赖某些特征。在Tensorflow框架中,我们可以使用多种方式实现dropout操作。接下来,...
recommend-type

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件.zip

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件如果权重无法下载,则可能是存储库超出了 git lfs 配额。请从没有此限制的bitbucket 存储库中提取。此存储库包含 yolov3 权重以及配置文件。该模型在Kaggle Open Images 挑战赛的私有 LB 上实现了 42.407 的 mAP 。为了使用这些权重,您需要安装darknet 。您可以在项目网站上阅读更多相关信息。有多种方法可以使用 darknet 进行检测。一种方法是创建一个 txt 文件,其中包含要运行检测的图像的路径,并从包含的 yolo.data 文件中指向该文件。运行检测的命令(假设 darknet 安装在该 repo 的根目录中)是 ./darknet/darknet detector valid yolo.data yolov3-spp.cfg yolov3-spp_final.weights我分享这些权重是因为它们可能对某些人有用。如果您遇到任何问题,我无法提供任何支持。Yolo 不太容易排除故障,如果您遇到段错误,则需要您自己找出问题所
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。