import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Dense, LSTM, Dropout from keras.callbacks import EarlyStopping # 读取csv文件 data = pd.read_csv('3c_left_1-6.csv') # 将数据转换为numpy数组 data = np.array(data) data = data.reshape((data.shape[0], 1, data.shape[1])) # 获取数据的维度信息 n_samples, n_timesteps, n_features = data.shape # 定义模型 model = Sequential() model.add(LSTM(64, input_shape=(n_timesteps, n_features), return_sequences=True)) model.add(Dropout(0.2)) # 添加Dropout层 model.add(Dense(n_features)) # 编译模型 model.compile(loss='mse', optimizer='adam') # 定义EarlyStopping回调函数 early_stopping = EarlyStopping(monitor='val_loss', min_delta=0.001, patience=5, mode='min', verbose=1) # 训练模型 model.fit(data, data, epochs=100, batch_size=32, validation_split=0.2, callbacks=[early_stopping]) # 对数据进行去噪 denoised_data = model.predict(data) # 计算去噪后的SNR,MSE,PSNR snr = np.mean(np.power(data, 2)) / np.mean(np.power(data - denoised_data, 2)) mse = np.mean(np.power(data - denoised_data, 2)) psnr = 10 * np.log10((np.power(data.max(), 2) / mse)) print("Signal-to-Noise Ratio (SNR): {:.2f} dB".format(snr)) print("Mean Squared Error (MSE): {:.2f}".format(mse)) print("Peak Signal-to-Noise Ratio (PSNR): {:.2f} dB".format(psnr)) # 将结果保存为csv文件 data = {'SNR': [snr], 'MSE': [mse], 'PSNR': [psnr]} df = pd.DataFrame(data) df.to_csv('indicator_lstm.csv', index=False) denoised_data = pd.DataFrame(denoised_data.reshape(n_samples, n_timesteps * n_features)) denoised_data.to_csv('denoised_data_lstm.csv', index=False)增加dropout的比例
时间: 2023-06-16 08:04:25 浏览: 221
将代码中的 `model.add(Dropout(0.2))` 中的 `0.2` 调整为想要的比例即可。例如,若想将比例调整为 `0.5`,则将代码改为 `model.add(Dropout(0.5))`。不过需要注意的是,过高的 dropout 比例可能会导致模型欠拟合。因此,需要根据具体情况进行调整。
相关问题
import matplotlib.pyplot as plt import pandas as pd from keras.models import Sequential from keras import layers from keras import regularizers import os import keras import keras.backend as K import numpy as np from keras.callbacks import LearningRateScheduler data = "data.csv" df = pd.read_csv(data, header=0, index_col=0) df1 = df.drop(["y"], axis=1) lbls = df["y"].values - 1 wave = np.zeros((11500, 178)) z = 0 for index, row in df1.iterrows(): wave[z, :] = row z+=1 mean = wave.mean(axis=0) wave -= mean std = wave.std(axis=0) wave /= std def one_hot(y): lbl = np.zeros(5) lbl[y] = 1 return lbl target = [] for value in lbls: target.append(one_hot(value)) target = np.array(target) wave = np.expand_dims(wave, axis=-1) model = Sequential() model.add(layers.Conv1D(64, 15, strides=2, input_shape=(178, 1), use_bias=False)) model.add(layers.ReLU()) model.add(layers.Conv1D(64, 3)) model.add(layers.Conv1D(64, 3, strides=2)) model.add(layers.BatchNormalization()) model.add(layers.Dropout(0.5)) model.add(layers.Conv1D(64, 3)) model.add(layers.Conv1D(64, 3, strides=2)) model.add(layers.BatchNormalization()) model.add(layers.LSTM(64, dropout=0.5, return_sequences=True)) model.add(layers.LSTM(64, dropout=0.5, return_sequences=True)) model.add(layers.LSTM(32)) model.add(layers.Dropout(0.5)) model.add(layers.Dense(5, activation="softmax")) model.summary() save_path = './keras_model3.h5' if os.path.isfile(save_path): model.load_weights(save_path) print('reloaded.') adam = keras.optimizers.adam() model.compile(optimizer=adam, loss="categorical_crossentropy", metrics=["acc"]) # 计算学习率 def lr_scheduler(epoch): # 每隔100个epoch,学习率减小为原来的0.5 if epoch % 100 == 0 and epoch != 0: lr = K.get_value(model.optimizer.lr) K.set_value(model.optimizer.lr, lr * 0.5) print("lr changed to {}".format(lr * 0.5)) return K.get_value(model.optimizer.lr) lrate = LearningRateScheduler(lr_scheduler) history = model.fit(wave, target, epochs=400, batch_size=128, validation_split=0.2, verbose=2, callbacks=[lrate]) model.save_weights(save_path) print(history.history.keys()) # summarize history for accuracy plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()
这段代码是用来训练一个深度学习模型的代码,使用了Keras和Tensorflow进行模型的搭建、训练和保存。该模型包含了卷积层、批量归一化层、Dropout层、LSTM层和全连接层,并且最终使用softmax激活函数得到预测的类别。通过对数据进行处理,将输入数据按照一定的规范进行规范化,将标签转换成了一个one-hot编码的形式。最后,该代码通过在数据上进行训练,得到一个可以用来做预测的深度学习模型。
使用RNN进行文本分类。 1. 编程的主要模块及说明: 模块 功能说明 1. 引入需要的库函数 通过import引入相关模块 2. 数据集读入并进行预处理 读取文件,获得文本和类型标签 3. 词向量数字化 文本去标点和特殊符号,并将文本内的词组进行word2vec处理变成64维的数字 4. 标准化 由于每个文本长短不一,因此要进行标准化,每个文本取前50个词组 5. 将数据集进行划分 数据集分出永不相见的训练集和开发集,并改为ndarray格式 6. 采用六步法搭建神经网络 使用keras中封装好的函数完成神经网络搭建(含RNN) 7. acc和loss可视化 通过plt和history函数完成代码
好的,以下是使用RNN进行文本分类的完整代码演示:
```
# 引入需要的库函数
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from keras.models import Sequential
from keras.layers import Dense, LSTM, Embedding, Dropout
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical
from keras.callbacks import EarlyStopping
from sklearn.model_selection import train_test_split
# 数据集读入并进行预处理
data = pd.read_csv('text_classification.csv', encoding='utf-8')
texts = data['text'].values
labels = data['label'].values
# 词向量数字化
tokenizer = Tokenizer(num_words=5000)
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)
word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))
# 标准化
max_len = 50
data = pad_sequences(sequences, maxlen=max_len)
# 将数据集进行划分
labels = to_categorical(labels)
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=42)
# 采用六步法搭建神经网络
model = Sequential()
model.add(Embedding(5000, 64))
model.add(LSTM(64, dropout=0.4, recurrent_dropout=0.4))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(128, activation='relu'))
model.add(Dense(2, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# acc和loss可视化
history = model.fit(X_train, y_train, epochs=10, batch_size=128, validation_split=0.1, callbacks=[EarlyStopping(monitor='val_loss', patience=3, min_delta=0.0001)])
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'b', label='Training acc')
plt.plot(epochs, val_acc, 'r', label='Validation acc')
plt.title('Training and Validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'b', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')
plt.title('Training and Validation loss')
plt.legend()
plt.show()
```
这个代码演示了使用RNN进行文本分类的完整流程,包括数据的读入和预处理、词向量数字化、标准化、数据集的划分、神经网络的搭建和acc/loss的可视化。希望能够对您有所帮助!
阅读全文