如何将[a,b,c,d] 变更 [{val:a, dis:false},{val:a, dis:false},{val:a, dis:false},{val:a, dis:false}] js
时间: 2024-12-23 07:24:12 浏览: 11
如果你有一个数组 `[a, b, c, d]`,并且你想将其转换为一个对象数组,每个元素都是一个对象,其中包含 `val` 和 `dis` 的键值对,你可以这样做:
```javascript
const originalArray = [a, b, c, d]; // 假设 a, b, c, d 是变量或常量
const transformedArray = originalArray.map((item, index) => ({ val: item, dis: false }));
// 输出:[ { val: a, dis: false }, { val: b, dis: false }, { val: c, dis: false }, { val: d, dis: false } ]
console.log(transformedArray);
```
这里我们使用了 `map()` 函数,它会遍历原始数组,对每个元素应用给定的函数(这里是创建一个新的对象),并将结果保存到新数组中。
如果你想让初始的 `dis` 始终为 `false`,则无需传递第二个参数给 `map()`,因为我们在构造新的对象时直接赋值为 `false`。
相关问题
for c = 1 : length(opt.C) for n = 1 : length(opt.nu) cur_C = opt.C(c); cur_nu = opt.nu(n); mean_Xbase_rec = zeros(size(Sig_Ybase, 1), opt.pca_d(d)); mean_Xval_rec = zeros(size(Sig_Yval, 1), opt.pca_d(d)); mean_Xval = zeros(size(Sig_Yval, 1), opt.pca_d(d)); parfor j = 1 : opt.pca_d(d) % SVR learning and testing regressor = svmtrain(mean_Xbase(:, j), Ker_base, ['-s 4 -t 4 -c ' num2str(cur_C) ' -n ' num2str(cur_nu) ' -m 10000']); mean_Xbase_rec(:, j) = svmpredict(mean_Xbase(:, j), Ker_base, regressor); mean_Xval_rec(:, j) = svmpredict(mean_Xval(:, j), Ker_val, regressor); end [dis_eu, dis_seu, acc_eu, acc_seu] = test_EXEM(mapped_Xval, Yval, mean_Xval_rec, avg_std_Xbase); val_dis_eu(c, n, g, d) = val_dis_eu(c, n, g, d) + dis_eu / nr_fold; val_dis_seu(c, n, g, d) = val_dis_seu(c, n, g, d) + dis_seu / nr_fold; val_acc_eu(c, n, g, d) = val_acc_eu(c, n, g, d) + acc_eu / nr_fold; val_acc_seu(c, n, g, d) = val_acc_seu(c, n, g, d) + acc_seu / nr_fold; end end
这段代码是用于在EXEM训练中进行SVR(Support Vector Regression)学习和评估的部分。在C和nu的循环中,对每个组合进行以下操作:
1. 设置当前的C和nu参数值为`cur_C`和`cur_nu`。
2. 初始化用于存储重构结果的矩阵`mean_Xbase_rec`和`mean_Xval_rec`,以及用于存储验证数据集平均值的矩阵`mean_Xval`。
3. 并行地对每个PCA维度进行以下操作:
a. 使用`svmtrain`函数,基于训练数据集的PCA降维结果`mean_Xbase(:, j)`和训练数据集的核矩阵`Ker_base`进行SVR学习。使用给定的C和nu参数进行模型训练。
b. 使用`svmpredict`函数,基于训练得到的SVR模型,对训练数据集和验证数据集中的PCA降维结果进行预测,得到重构后的结果`mean_Xbase_rec(:, j)`和`mean_Xval_rec(:, j)`。
4. 调用`test_EXEM`函数,对重构后的验证数据集、真实类别标签和平均标准差进行评估。返回值包括欧氏距离(dis_eu)、标准化欧氏距离(dis_seu)、准确率(acc_eu)和标准化准确率(acc_seu)。
5. 将评估结果加权平均到相应的结果矩阵中。`val_dis_eu`、`val_dis_seu`、`val_acc_eu`和`val_acc_seu`是用于存储不同参数组合下的评估结果的多维矩阵。
这段代码的目的是在EXEM训练过程中,对不同参数组合下的SVR模型进行学习和评估,并将评估结果存储在相应的结果矩阵中,以备后续使用。
%% testing if (strcmp(task, 'test')) if(isempty(direct_test) || length(direct_test) == 1) load(['../EXEM_CV_results/EXEM_classCV_' dataset '_split' num2str(opt.ind_split) '_' feature_name '_' norm_method '.mat'],... 'val_dis_eu', 'val_dis_seu', 'val_acc_eu', 'val_acc_seu', 'opt'); if (strcmp(test_type, 'dis_eu')) [loc_C, loc_nu, loc_gamma, loc_pca_d] = find_max(-val_dis_eu, direct_test); elseif (strcmp(test_type, 'dis_seu')) [loc_C, loc_nu, loc_gamma, loc_pca_d] = find_max(-val_dis_seu, direct_test); elseif (strcmp(test_type, 'acc_eu')) [loc_C, loc_nu, loc_gamma, loc_pca_d] = find_max(val_acc_eu, direct_test); elseif (strcmp(test_type, 'acc_seu')) [loc_C, loc_nu, loc_gamma, loc_pca_d] = find_max(val_acc_seu, direct_test); else disp('Wrong test type!'); return; end C = opt.C(loc_C(1)); nu = opt.nu(loc_nu(1)); gamma = opt.gamma(loc_gamma(1)); pca_d = opt.pca_d(loc_pca_d(1)); disp([loc_C(1), loc_nu(1), loc_gamma(1), loc_pca_d(1)]); else C = direct_test(1); nu = direct_test(2); gamma = direct_test(3); pca_d = direct_test(4); end Sig_Ytr = Sig_Y(unique(Ytr), :); Sig_Yte = Sig_Y(unique(Yte), :);
这段代码是用于进行测试的部分。
首先判断是否为测试任务(`task`为'test')。如果是,则执行以下操作:
1. 如果`direct_test`为空或长度为1,则加载之前保存的交叉验证结果和参数设置。使用`load`函数从MAT文件中加载`val_dis_eu`、`val_dis_seu`、`val_acc_eu`、`val_acc_seu`和`opt`变量。这些变量保存了交叉验证过程中的评估结果和参数设置。
2. 根据`test_type`的值,调用`find_max`函数找到在测试类型下具有最大值的索引。如果`test_type`为'dis_eu',则在-val_dis_eu中找到最大值的索引;如果为'dis_seu',则在-val_dis_seu中找到最大值的索引;如果为'acc_eu',则在val_acc_eu中找到最大值的索引;如果为'acc_seu',则在val_acc_seu中找到最大值的索引。
3. 根据找到的最大值的索引,获取对应的C、nu、gamma和pca_d参数值。
4. 显示找到的最大值的索引,用于输出结果。
5. 若`direct_test`不为空且长度为4,则直接使用`direct_test`中指定的C、nu、gamma和pca_d参数值。
6. 根据训练数据集标签Ytr,在Sig_Y中选择对应类别的特征向量,得到Sig_Ytr。
7. 根据测试数据集标签Yte,在Sig_Y中选择对应类别的特征向量,得到Sig_Yte。
这段代码的目的是根据测试任务的要求,选择合适的参数设置,并获取相应的训练和测试数据集的特征向量。如果直接指定了测试参数,则使用指定的参数进行测试;否则,根据交叉验证结果选择最优参数进行测试。
阅读全文